摘 要: | 信息增益率倾向于取值数较少的属性和产生不平衡的划分,GINI指数偏向于取值数较多的属性且区间趋于平衡的划分.基于此,该文提出融合GINI指数的C4.5改进算法,首先计算候选属性的信息增益率和GINI指数,其次计算信息增益率和GINI指数的比值,最后筛选出比值最大的属性作为划分结点,改进了C4.5算法的不足.以10次10折交叉验证准确率和运行时间为评价指标,通过5组UCI数据测试改进算法性能,并与ID3、C4.5和CART算法对比实验.实验结果表明:融合GINI指数的C4.5算法减轻了属性取值多少对划分结点选择的影响,并且缓和了划分区间的不平衡,提高了分类准确率和运行效率,算法更加稳定,可行有效.
|