首页 | 本学科首页   官方微博 | 高级检索  
     

融合GINI指数的C4.5算法的分类研究
作者姓名:聂斌  李欢  罗计根  杜建强  周丽  黄强
作者单位:江西中医药大学计算机学院, 江西 南昌 330004
摘    要:信息增益率倾向于取值数较少的属性和产生不平衡的划分,GINI指数偏向于取值数较多的属性且区间趋于平衡的划分.基于此,该文提出融合GINI指数的C4.5改进算法,首先计算候选属性的信息增益率和GINI指数,其次计算信息增益率和GINI指数的比值,最后筛选出比值最大的属性作为划分结点,改进了C4.5算法的不足.以10次10折交叉验证准确率和运行时间为评价指标,通过5组UCI数据测试改进算法性能,并与ID3、C4.5和CART算法对比实验.实验结果表明:融合GINI指数的C4.5算法减轻了属性取值多少对划分结点选择的影响,并且缓和了划分区间的不平衡,提高了分类准确率和运行效率,算法更加稳定,可行有效.

关 键 词:C4.5算法  GINI指数  决策树  中医药信息
点击此处可从《江西师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《江西师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号