摘 要: | 为实现被动测角目标状态和数目的实时估计,在高斯混合粒子(Gaussian mixture particle, GMP)的势化概率假设密度(cardinalized probability hypothesis density, CPHD) 滤波框架下,提出了基于抗“飞点”无迹卡尔曼滤波器(unscented Kalman filter, UKF)的GMPCPHD滤波算法,即抗“飞点”的UKF GMPCPHD滤波算法。在该算法中,粒子滤波的重要性采样函数由抗“飞点”UKF产生,粒子的预测与更新采用拟蒙特卡罗(quasi Monte Carlo, QMC)方式,目标状态的概率假设密度(probability hypothesis density, PHD)和势分布用一组高斯粒子滤波器(Gaussian particle filtering, GPF)近似。通过该算法与GMPCPHD、UKF-GMPPHD滤波算法的对比仿真,验证了该算法良好的跟踪性能。
|