摘 要: | 经典UPSNet已经取得了较好的全景分割效果,但是使用了一种单向信息流动的特征金字塔网络,存在实例分支的目标实例定位不够准确的问题,并且语义分支的语义分割能力还需进一步提升.为此,通过考虑两个任务的差异性以及共性,重新设计特征金字塔网络结构以提取出更适合全景分割的特征图,从而提高实例分支的AP评价指标.在语义分支中引入克罗内克卷积,与可变形卷积进行融合使得特征图的感受野更大并且捕获了局部信息,使语义分支的mIoU评价指标得到了提高.此模型在Cityscapes数据集上进行实验,验证了所设计的每个模块及整个模型的有效性.
|