首页 | 本学科首页   官方微博 | 高级检索  
     


Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.
Authors:A E Lacerda  H S Kim  P Ruth  E Perez-Reyes  V Flockerzi  F Hofmann  L Birnbaumer  A M Brown
Affiliation:Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas 77030.
Abstract:Purification of skeletal muscle dihydropyridine binding sites has enabled protein complexes to be isolated from which Ca2+ currents have been reconstituted. Complementary DNAs encoding the five subunits of the dihydropyridine receptor, alpha 1, beta, gamma, alpha 2 and delta, have been cloned and it is now recognized that alpha 2 and delta are derived from a common precursor. The alpha 1 subunit can itself produce Ca2+ currents, as was demonstrated using mouse L cells lacking alpha 2 delta, beta and gamma (our unpublished results). In L cells, stable expression of skeletal muscle alpha 1 alone was sufficient to generate voltage-sensitive, high-threshold L-type Ca2+ channel currents which were dihydropyridine-sensitive and blocked by Cd2+, but the activation kinetics were about 100 times slower than expected for skeletal muscle Ca2+ channel currents. This could have been due to the cell type in which alpha 1 was being expressed or to the lack of a regulatory component particularly one of the subunits that copurifies with alpha 1. We show here that coexpression of skeletal muscle beta with skeletal muscle alpha 1 generates cell lines expressing Ca2+ channel currents with normal activation kinetics as evidence for the participation of the dihydropyridine-receptor beta subunits in the generation of skeletal muscle Ca2+ channel currents.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号