首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的入库径流混沌时间序列预测模型及应用
引用本文:吴学文,索丽生,王志坚. 基于SVM的入库径流混沌时间序列预测模型及应用[J]. 系统仿真学报, 2011, 23(11): 2556-2559
作者姓名:吴学文  索丽生  王志坚
作者单位:1. 河海大学计算机与信息学院,南京,210098
2. 河海大学水利水电学院,南京,210098
摘    要:针对常用的入库径流混沌预测模型只能做短期预测,且需要大量样本数据的问题,将支持向量机理论与混沌预测理论相耦合,建立基于支持向量机的入库径流混沌时间序列预测模型,该模型利用混沌理论中的相空间重构技术将原始入库径流序列映射到一个高维相空间,以相空间中的相,占为基础构造训练样本和测试样本,然后利用支持向量机理论进行预测。经实例计算,模型比基于最大Lyapunov指数的混沌预测模型、人工神经网络模型和自回归模型拟合效果好,预测精度高,丰富和发展了入库径流预测理论和方法。

关 键 词:混沌时间序列  支持向量机  相空间重构  入库径流

Chaotic Time Series Forecasting Model Based on SVM for Reservoir Runoff
WU Xue-wen,SUO Li-sheng,WANG Zhi-jian. Chaotic Time Series Forecasting Model Based on SVM for Reservoir Runoff[J]. Journal of System Simulation, 2011, 23(11): 2556-2559
Authors:WU Xue-wen  SUO Li-sheng  WANG Zhi-jian
Affiliation:WU Xue-wen1,SUO Li-sheng2,WANG Zhi-jian1(1.College of Computer & Information,Hohai Univ.,Nanjing 210098,China,2.College of Water Conservancy & Hydropower,China)
Abstract:Aiming at the problem that traditional chaotic forecasting model is only for short-term forecasting and needs a lot of data,a chaotic time series forecasting model based on support vector machine for reservoir runoff was established which combines the support vector machine theory and chaotic forecasting theory.The original time series was reconstructed to a high dimension space through the skills of state space reconstruction.The training sample and testing sample was conformed based on the states in the s...
Keywords:chaotic time series  support vector machine  state space reconstruction  reservoir runoff  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号