首页 | 本学科首页   官方微博 | 高级检索  
     

社会化标签语义相似度的协同过滤算法
引用本文:谌颃. 社会化标签语义相似度的协同过滤算法[J]. 华侨大学学报(自然科学版), 2016, 0(1): 84-87. DOI: 10.11830/ISSN.1000-5013.2016.01.0084
作者姓名:谌颃
作者单位:广东技术师范学院天河学院 信息与传媒学院, 广东 广州 510540
摘    要:为解决传统的协同过滤算法不能准确理解用户的喜好,影响推荐准确率和推荐效果,提出基于社会化标签语义相似度的协同过滤算法.算法以标签语义相似度为基础,将项目资源和相关标签的语义信息纳入,显著提高了推荐系统的预测性能.研究结果表明:与以具体评分数据为基础的算法相比,该算法较好地解决了词相似度和句子相似度计算问题,推荐准确度和性能较以往的协同过滤算法有明显提高,改善了推荐效果.

关 键 词:协同过滤  推荐系统  社会化标签  语义相似度  预测性能

Collaborative Filtering Algorithm Based on Social Tags Semantic Similarity
CHEN Hang. Collaborative Filtering Algorithm Based on Social Tags Semantic Similarity[J]. Journal of Huaqiao University(Natural Science), 2016, 0(1): 84-87. DOI: 10.11830/ISSN.1000-5013.2016.01.0084
Authors:CHEN Hang
Affiliation:Information and Communication College, Tianhe College of Guangdong Polytechnic Normal University, Guangzhou 510540, China
Abstract:In order to solve the traditional collaborative filtering algorithm can not accurately understand the user’s preferences, affect the recommendation accuracy and recommendation effect, a collaborative filtering algorithm based on social tags semantic similarity is proposed. Based on the semantic similarity of tags, the semantic information of project resources and related tags is included, and the prediction performance of the recommendation system is significantly improved. Research results show that: compared with the algorithm based on the user rating, the proposed algorithm can solve the problem of word similarity and sentence similarity computation, and the recommendation accuracy and recommendation effect, as well as the performance of the proposed algorithm is significantly improved compared with the previous collaborative filtering algorithm.
Keywords:collaborative filtering  recommendation system  social tags  semantic similarity  prediction performance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号