首页 | 本学科首页   官方微博 | 高级检索  
     

二维各向异性位势薄体问题的虚边界元法
引用本文:陈关忠,周爱华,张耀明. 二维各向异性位势薄体问题的虚边界元法[J]. 山东理工大学学报:自然科学版, 2013, 0(2): 14-18
作者姓名:陈关忠  周爱华  张耀明
作者单位:山东理工大学理学院,山东淄博255091
基金项目:山东省自然科学基金重点资助项目(ZR2010AZ003)
摘    要:传统边界元法分析各向异性薄体问题时涉及奇异边界积分和拟奇异边界积分的处理,估计这些积分具有相当的难度而且耗时.提出了求解二维各向异性位势薄体问题的虚边界元方法,给出了求解此类问题的新途径,同时拓展了虚边界元法的应用范围.数值算例表明,虚边界元法可有效求解二维各向异性位势薄体问题,且方法简单、精度高、易于程序设计.

关 键 词:虚边界元法  位势问题  各向异性  二维薄体问题

Virtual boundary element method for 2D anisotropic thin-body structure in potential problems
CHEN Guan-zhong,ZHOU Ai-hua,ZHANG Yao-ming. Virtual boundary element method for 2D anisotropic thin-body structure in potential problems[J]. Journal of Shandong University of Technology:Science and Technology, 2013, 0(2): 14-18
Authors:CHEN Guan-zhong  ZHOU Ai-hua  ZHANG Yao-ming
Affiliation:(School of Science, Shandong University of Technology, Zibo 255091, China)
Abstract:The analysis of anisotropic thin-body problem with boundary element method involve to singluar and nearly singular integrals which is hard and time-consuming to estimate. In this pa- per, the virtual boundary element method(VBEM) for solving anisotropic thin-body problem in 2D potential theory is presented. It provides a new approach to dealing with such problems. Meanwhile, it extends the application field of VBEM. The numerical results obtained by proposed method prove that the VBEM is not only an efficient tool for solving 2D anisotropic thin-body problems in potential, but also a simple and easily programmed method.
Keywords:VBEM~ potential problem~ anisotropic structure~ 2D thin-body problem
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号