摘 要: | 考虑系统 x=-a_1(t)f(x)+a_2(t)ф(y) y=a_3(t)x-a_4(t)y,f(0)=0,ф(0)=0 (1)定理1 假设成立条件(假定本文所考虑的函数均连续可微): 1)x·f(x)>0,(x≠0),且|f(x)|≥|x|; 2)对于一切t≥t_0,有a_1(t)≥a_1(>0);a_2(t)≤a_2(>0),a_3(t)≤a_3(0),a_4(t)≥a_4(0),(a_2+a_3)/(a_1~(1/2)·a_4~(1/4))<2 3)|φ(y)|≤|y|; 4)lim |x|→integral from n=0 to x (f(x)dx=+∞)则非线性系统(1)的零解是全局渐近稳定的。
|