首页 | 本学科首页   官方微博 | 高级检索  
     

自适应粒子群神经网络识别种蛋成活性
引用本文:郁志宏,王春光,张晓芳,张莉. 自适应粒子群神经网络识别种蛋成活性[J]. 内蒙古大学学报(自然科学版), 2006, 37(4): 464-467
作者姓名:郁志宏  王春光  张晓芳  张莉
作者单位:内蒙古农业大学机电工程学院,呼和浩特,010018;内蒙古农业大学机电工程学院,呼和浩特,010018;内蒙古农业大学机电工程学院,呼和浩特,010018;内蒙古农业大学机电工程学院,呼和浩特,010018
摘    要:提出了一种自适应粒子群神经网络自动识别孵化早期种蛋成活性的方法.通过主成分分析提取孵化种蛋颜色特征,减少了神经网络输入节点数.提出的自适应粒子群优化算法,用于优化多层前馈神经网络的拓扑结构,提高了神经网络的学习质量和速度.实验表明该方法识别种蛋成活性切实可行,识别准确性高,算法具有鲁棒性.

关 键 词:粒子群算法  神经网络  孵化种蛋  成活性识别
文章编号:1000-1638(2006)04-0464-04
收稿时间:2005-12-28
修稿时间:2005-12-28

Research on Automatic Identifying Fertility of Hatching Eggs Using a Self-adapted PSO Neural Network
YU Zhi-hong,WANG Chun-guang,ZHANG Xiao-fang,ZHANG Li. Research on Automatic Identifying Fertility of Hatching Eggs Using a Self-adapted PSO Neural Network[J]. Acta Scientiarum Naturalium Universitatis Neimongol, 2006, 37(4): 464-467
Authors:YU Zhi-hong  WANG Chun-guang  ZHANG Xiao-fang  ZHANG Li
Affiliation:College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract:A self-adapted PSO neural network for automatic identifying fertility of hatching eggs is given.The primary components of feature parameters are extracted and selected with primary component analysis(PCA).The structure of multi-layer feedback forward neural network is optimized by improved PSO.Learning quality and training speed of the neural network are improved.The result shows that the neural network model for fertility of hatching eggs detection has high accuracy and efficiency and the algorithm is robust.
Keywords:PSO  neural network  hatching eggs  fertility identifying
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号