摘 要: | 现有移动对象聚集模式因为模式定义的不足,无法全面地反映移动对象群体聚集运动.提出一种新的移动对象聚集模式,称为汇合模式,该模式从移动对象群体运动形态出发设计,准确反映群体的变化趋势,有效识别群体聚集运动.汇合模式挖掘过程中使用簇包含关系保证群体之间的关联性,识别群体变化趋势.通过相邻时刻的簇集合进行条件为簇包含的连接操作,实现汇合模式的挖掘.利用移动对象簇之间的空间关系对连接操作进行剪枝,提升汇合模式挖掘的效率.针对汇合模式挖掘中移动对象聚类效率较低的问题,使用四叉树改进DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,进一步提升了汇合模式挖掘算法的性能.利用真实的GPS轨迹数据进行实验,结果表明汇合模式挖掘方法是有效的.
|