首页 | 本学科首页   官方微博 | 高级检索  
     

基于广义回归神经网络的交流电磁场检测裂纹量化研究
引用本文:李伟,陈国明,郑贤斌. 基于广义回归神经网络的交流电磁场检测裂纹量化研究[J]. 中国石油大学学报(自然科学版), 2007, 31(2): 105-109
作者姓名:李伟  陈国明  郑贤斌
作者单位:中国石油大学,机电工程学院,山东,东营,257061
基金项目:国家高技术研究发展计划(863计划)
摘    要:考虑到目前交流电磁场检测中裂纹量化精度和智能化水平的不足,将广义回归神经网络(GRNN)引入到交流电磁场检测技术中来,在有限元仿真试验基础上,选择了作为输入元素的交流电磁场信号特征向量,构建了一种适合于交流电磁场检测裂纹量化分析的GRNN模型,并利用归一化处理后的一些离散数据作为网络的训练和检测样本,使网络完成对整个裂纹交流电磁场范围内的主要信息的存储,从中发现输出和输入之间的内在关系,完成对未知点的预测。结果表明,与传统的线性插值方法以及BP网络相比,该方法建模简单,预测精度高,对原始数据的分布和边界条件无特别要求,推广性能强,人为调节参数少,收敛速度快,更为智能化,尤其在获得已知样本稀少的情况下仍能表现出极强的适应性,从而保证了模型的精度和推广性能,为交流电磁场检测裂纹量化提供了一种智能高效的方法。

关 键 词:无损检测  交流电磁场检测  裂纹量化  广义回归神经网络
修稿时间:2006-08-22

Crack sizing for alternating current field measurement based on GRNN
LI Wei,HEN Guo-ming,HENG Xian-bin. Crack sizing for alternating current field measurement based on GRNN[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2007, 31(2): 105-109
Authors:LI Wei  HEN Guo-ming  HENG Xian-bin
Affiliation:College of Mechanical and Electronic Engineering in China University of Petroleum, Dongying 257061, Shandong Province, China
Abstract:Considering the deficiency of the precision and intelligence of the crack sizing method used in the alternating current field measurement(ACFM),the generalized regression neural network(GRNN) was introduced.On the basis of the finite element simulating experiment,characteristic vectors were picked up as input-elements of GRNN.Using normalized discrete data as training and testing samples,the main information was saved in the GRNN model,and the intrinsic relationship between input and output was found out.Finally,the GRNN model was used to forecast unknown points.The results indicate that compared with the traditional linear interpolation and BP neural network,the GRNN is more precise,intelligent and generalized,and it has the strong adaptability with few training and testing samples,which guarantees the precision and generalization of the model for crack-sizing forecasting in ACFM.
Keywords:nondestructive test  alternating current field measurement  crack sizing  generalized regression neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号