首页 | 本学科首页   官方微博 | 高级检索  
     

基于多种社交关系的概率矩阵分解推荐算法
引用本文:公翠娟,宾晟,孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 0(1)
作者姓名:公翠娟  宾晟  孙更新
作者单位:青岛大学数据科学与软件工程学院
基金项目:山东省自然基金面上项目(ZR2017MG011);教育部人文社会科学研究青年项目(15YJC860001);山东省社会科学规划项目(17CHLJ16)。
摘    要:随着社交网络的发展,社会化推荐算法得到普遍应用,现有的推荐算法往往只是将一种社交关系引入到推荐系统,但在现实社交网络中用户之间往往存在多种社交关系。基于多子网复合复杂网络模型,利用共享用户特征矩阵,提出了基于多关系社交网络的矩阵分解推荐算法。通过在Epinions数据集上的实验结果分析,准确率评价指标MAE、RMSE和NMAE分别提高了34%、27%和7%,由此可以证明,多关系社交网络的矩阵分解推荐算法能有效提高推荐准确率。

关 键 词:多关系社交网络  矩阵分解  推荐算法  多子网复合复杂网络

Matrix Decomposition Recommendation Algorithm Based on Multi-Relationship Social Network
GONG Cuijuan,BIN Sheng,SUN Gengxin. Matrix Decomposition Recommendation Algorithm Based on Multi-Relationship Social Network[J]. , 2021, 0(1)
Authors:GONG Cuijuan  BIN Sheng  SUN Gengxin
Affiliation:(School of data science and software engineering, Qingdao University, Qingdao 266071, China)
Abstract:With the development of social networks,social recommendation algorithms are widely used.Existing recommendation algorithms often only introduce one kind of social relationship into the recommendation system,but in reality there are multiple social relationships between users.Based on the multi-subnet composite complex network model and the shared user characteristic matrix,this paper proposes a matrix decomposition recommendation algorithm based on the multi-relational social network.Through the analysis of experimental results on the Epinions data set,the accuracy evaluation indexes MAE,RMSE and NMAE increased by 34%,27%and 7%respectively.This proves that the matrix factorization recommendation algorithm of multi-relational social networks can effectively improve the accuracy of recommendation.
Keywords:multi-relationship social network  matrix decomposition  recommendation algorithm  multi-subnet complex network
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号