摘 要: | 本文给出了单叶函数就范族∑、∑~(-1)、∑_k、∑_k~(-1)、S、S~(-1)、S_k、S_k~(-1)的 Grunsky 不等式的积分形式。作为初步应用,研究了族 S′_k~(-1)的函数 G(w)在 w=0某邻域的 Tayler 展开式G(w)=w+d_3w_~3+d_4w~4+……的系数估值,并获得:|d_3~|≤k,|d_5|≤2k-1/(3!)k(1-k)(9+3k)≤2k,|d_7~|≤5k-1/(4!)k(1-k)(84+31k+k_~2)≤5k,|d_5|≤14k-1/(5!)k(1-k)(1320+1582k+533k_~2+55k_~2)≤14k。从而推广了文献[3]中的一系列结论。
|