首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluating the predictive accuracy of volatility models
Authors:Jose A. Lopez
Abstract:Standard statistical loss functions, such as mean‐squared error, are commonly used for evaluating financial volatility forecasts. In this paper, an alternative evaluation framework, based on probability scoring rules that can be more closely tailored to a forecast user's decision problem, is proposed. According to the decision at hand, the user specifies the economic events to be forecast, the scoring rule with which to evaluate these probability forecasts, and the subsets of the forecasts of particular interest. The volatility forecasts from a model are then transformed into probability forecasts of the relevant events and evaluated using the selected scoring rule and calibration tests. An empirical example using exchange rate data illustrates the framework and confirms that the choice of loss function directly affects the forecast evaluation results. Copyright © 2001 John Wiley & Sons, Ltd.
Keywords:volatility  ARCH  probability forecasts  scoring rules  exchange rates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号