首页 | 本学科首页   官方微博 | 高级检索  
     

基于偏差估计卷积神经网络恒星光谱数据自动分类
引用本文:邓诗宇,刘承志,康喆,李振伟,刘德龙,张楠,朱成伟,牛炳力,陈龙,丁一高,姜平. 基于偏差估计卷积神经网络恒星光谱数据自动分类[J]. 科学技术与工程, 2021, 21(16): 6613-6618. DOI: 10.3969/j.issn.1671-1815.2021.16.011
作者姓名:邓诗宇  刘承志  康喆  李振伟  刘德龙  张楠  朱成伟  牛炳力  陈龙  丁一高  姜平
作者单位:中国科学院国家天文台长春人造卫星观测站,长春130117;中国科学院大学天文与空间科学学院, 北京100049;中国科学院国家天文台长春人造卫星观测站,长春130117;中国科学院空间目标与碎片观测重点实验室, 南京210008;中国科学院国家天文台长春人造卫星观测站,长春130117
基金项目:中国科学院天文大科学中心前瞻课题(Y9290201)和中国科学院青年创新促进会会员资助项目(2018-2021)
摘    要:天体物理学科中恒星光谱具有极其重要的研究前景,中国自主研制的大科学天文巡天项目大天区多目标光纤光谱望远镜(large sky area multi-object fiber spectroscopy telescope,LAMOST)自启用以来,已经成为世界上空间光谱获取数据量最大的科学装置.目前,第6期数据(sixt...

关 键 词:恒星光谱  偏差估计  卷积神经网络(CNN)  分类算法
收稿时间:2020-09-08
修稿时间:2021-03-02

Automatic Classification of Massive Stellar Spectral Data based on Bias Estimation Convolutional Neural Network
Deng Shiyu,Liu Chengzhi,Kang Zhe,Li Zhenwei,Liu Delong,Zhang Nan,Zhu Chengwei,Niu Bingli,Chen Long,Ding Yigao,Jiang Ping. Automatic Classification of Massive Stellar Spectral Data based on Bias Estimation Convolutional Neural Network[J]. Science Technology and Engineering, 2021, 21(16): 6613-6618. DOI: 10.3969/j.issn.1671-1815.2021.16.011
Authors:Deng Shiyu  Liu Chengzhi  Kang Zhe  Li Zhenwei  Liu Delong  Zhang Nan  Zhu Chengwei  Niu Bingli  Chen Long  Ding Yigao  Jiang Ping
Affiliation:Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences
Abstract:The stellar spectroscopy in the Department of Astrophysics has extremely important research prospects. Since the LAMOST (Large Sky Area Multi-Object Fiber Spectroscopy Telescope), a large-scale scientific astronomy survey project independently developed by China which has been the world''s largest scientific device for obtaining space spectroscopy data. The sixth data (DR6) is currently available to astronomers around the world. The classification of stellar spectral data is extremely important in studying the content of astronomical observation data analysis. In order to take into account both fast operating speed and accurate classification accuracy, this paper analyzes F, G, K, M-type star spectrum in DR5 based on the bias estimation convolutional neural network method (BECNN). The core idea of BECNN is to replace the bias parameter of the flexible maximum transfer function with the bias parameter of the Taylor expansion of the deviation function, thereby reducing the error and improving the accuracy. Comparing this method with the existing two algorithms, the Neural Network (NN) and the Convolutional Neural Network (CNN). The results show that the automatic classification accuracy of the BECNN algorithm in F, G, K, and M star spectra is 93.177%, 88.349%, 93.807%, 89.255%; the CNN algorithm is 91.646%, 87.671%, 92.701%, 89.054%; the NN algorithm is 90.819%, 87.417%, 91.325%, 88.092%, and the fusion of pairwise star spectral data is used as a test Sample set for further verification. It is concluded that the automatic classification accuracy of BECNN spectrum is higher than CNN and NN. This method has good reference value in future research on special celestial body search and fine classification of star spectrum.
Keywords:stellar spectral   bias estimation   convolutional neural   classification algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号