首页 | 本学科首页   官方微博 | 高级检索  
     

基于MFOA__LSSVM的IPV6网络入侵检测算法研究
作者姓名:蔡思思  熊国明
摘    要:针对LSSVM的网络入侵检测技术存在检测率低和误判率高的缺点,针对果蝇优化算法易陷入"早熟"和局部最优的问题,将修正因子引入果蝇优化算法,提出一种修正的果蝇优化算法(Modified Fruit Fly Optimization Algorithm,MFOA),避免果蝇优化算法陷入局部最优.在MFOA算法的基础上,提出一种MFOA优化LSSVM的IPV6网络入侵检测方法.以KDD CUP99数据集为研究对象,研究结果表明,MFOA__LSSVM算法在检测率和误判率指标上均优于FOA__LSSVM和LSSVM,MFOA__LSSVM算法的网络入侵检测率平均高达96.33%.

关 键 词:果蝇优化算法;IPV6网络;入侵检测;检测率
本文献已被 CNKI 等数据库收录!
点击此处可从《湘潭大学自然科学学报》浏览原始摘要信息
点击此处可从《湘潭大学自然科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号