首页 | 本学科首页   官方微博 | 高级检索  
     

L_(3/2)正则化图非负矩阵分解算法
引用本文:杜世强,石玉清,马明,王维兰. L_(3/2)正则化图非负矩阵分解算法[J]. 吉林大学学报(理学版), 2014, 52(5): 1007-1013
作者姓名:杜世强  石玉清  马明  王维兰
作者单位:1. 西北民族大学 数学与计算机科学学院, 兰州 730030; 2. 西北民族大学 电气工程学院, 兰州 730030
基金项目:国家自然科学基金,中央高校基本科研业务费专项基金,西北民族大学中青年科研基金
摘    要:基于图正则化非负矩阵分解算法(GNMF),提出一种基于凸光滑的L3/2范数正则化图非负矩阵分解算法.该算法用非负矩阵分解算法对数据进行低维非负分解时,根据流形学习的图框架理论,构建邻接矩阵保持数据局部几何结构,并对数据的低维表示特征进行凸光滑的L3/2范数稀疏性约束,在给出算法更新迭代规则的同时,从理论上证明了所给算法的收敛性.通过人脸数据库ORL、手写体数据库USPS和图像库COIL20的仿真实验表明,相对于非负矩阵分解算法及其基于稀疏表示的改进算法,所给算法均具有更高的聚类精度.

关 键 词:图像聚类  稀疏表示  非负矩阵分解  正则化  
收稿时间:2013-10-23

L3/2 Regularized Graph Non-negative Matrix Factorization
DU Shiqiang,SHI Yuqing,MA Ming,WANG Weilan. L3/2 Regularized Graph Non-negative Matrix Factorization[J]. Journal of Jilin University: Sci Ed, 2014, 52(5): 1007-1013
Authors:DU Shiqiang  SHI Yuqing  MA Ming  WANG Weilan
Affiliation:1. School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, China;2. School of Electrical Engineering, Northwest University for Nationalities, Lanzhou 730030, China
Abstract:This paper presents a novel algorithm called L3/2 regularized graph non negative matrix factorization, which was based on the convex and smooth L3/2 norm. When original data is factorized in lower dimensional space by non negative matrix factorization, L3/2 regularized graph non negative matrix factorization preserves the local structure and intrinsic geometry of data, with the aid of the convex and smooth L3/2 norm as sparse constrain for the low dimensional feature. An efficient multiplicative updating procedure was produced along with its theoretic justification of the algorithm convergence. Compared with non negative matrix factorization and its improved algorithms based on sparse representation, the proposed method achievesbetter clustering results, which is shown by experiment results on ORL face database, USPS handwrite database, and COIL20 image database.
Keywords:image clustering  sparse representation  non-negative matrix factorization  regularized
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号