首页 | 本学科首页   官方微博 | 高级检索  
     

具有强对称自同态的环及其扩张
引用本文:王尧,薛岭,任艳丽. 具有强对称自同态的环及其扩张[J]. 吉林大学学报(理学版), 2014, 52(5): 861-868
作者姓名:王尧  薛岭  任艳丽
作者单位:1. 南京信息工程大学 数学与统计学院, 南京 210044; 2. 南京晓庄学院 数学与信息技术学院, 南京 211171
基金项目:国家自然科学基金,江苏省自然科学基金
摘    要:设α为环R的自同态, 如果对任意的a,b,c∈R, 由abα(c)=0可推出acb=0, 则称R是强右α-对称环. 研究强α-对称环与对称环、 强α-可逆环、 强α-半交换环等相关环的关系及强α-对称环的扩张性质, 证明了: 1) 环R是强α-对称环当且仅当R是对称环且是α-compatible环; 2) 设R是约化环, 则R是强α-对称环当且仅当R[x;α]是强α-对称环; 3) 设α是右Ore环R的自同构, 则环R是强α-对称环当且仅当Q(R)是强α-对称环.

关 键 词:强&alpha  -对称环  强&alpha  -可逆环  强&alpha  -半交换环  &alpha  -compatible环  经典右商环  斜多项式环  
收稿时间:2014-01-13

Rings with Strongly Symmetric Endomorphisms and Their Extensions
WANG Yao,XUE Ling,REN Yanli. Rings with Strongly Symmetric Endomorphisms and Their Extensions[J]. Journal of Jilin University: Sci Ed, 2014, 52(5): 861-868
Authors:WANG Yao  XUE Ling  REN Yanli
Affiliation:1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044,China; 2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract:The rings with strongly symmetric endomorphisms were investigated. Let α be an endomorphism of ring R. Ring R is known as strong right α-symmetric if abα(c)=0 implies acb=0 for any a,b,c∈R. The relationships between strong α-symmetric ring and symmetric, strong α-reversible or strong α-semicommutative ring were discussed, and some extensions of strong α-symmetric rings were st
udied. It is proved that 1) Ring R is strong α-symmetric if and onlyif R is symmetric and α-compatible; 2) Ring R is strong α-symmetric if and only if R[x;α] is strong α-symmetric; 3) If α is an automorphism of right Ore ring R, then R is strong α-symmetric if and only if the classical right quotient ring Q(R) of R is strongα-symmetric.
Keywords:strongα-symmetric ring  strongα-reversible ring  strongα-semicommutative ring  α-compatible ring  classical right quotient ring  skew polynomial ring
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号