首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的汉语问句分类
引用本文:余正涛,樊孝忠,郭剑毅. 基于支持向量机的汉语问句分类[J]. 华南理工大学学报(自然科学版), 2005, 33(9): 25-29,34
作者姓名:余正涛  樊孝忠  郭剑毅
作者单位:昆明理工大学,信息工程与自动化学院,云南,昆明,650051;北京理工大学,计算机科学与工程系,北京,100081
基金项目:云南省信息技术基金资助项目(2002IT03)
摘    要:目前汉语问句分类一般都依据疑问词及其相关词的组合规则,但由于规则的提取很深地依赖于语言知识,而且很难穷举出所有的特征规则,因此会影响分类的效果.支持向量机(SVM)是建立在统计理论基础上的机器学习方法,对于小样本分类问题有很好的识别效果.文中分析和定义了汉语问句的类型,建立了以SVM为基础的问句分类模型,详细描述了问句分类特征的选取过程,并在句法特征的基础上引入语义特征进行汉语问句分类实验,分类准确率达88.7%,表明结合句法和语义特征以SVM进行汉语问句分类具有很好的效果.

关 键 词:问答系统  问句分类  支持向量机  句法特征  语义特征
文章编号:1000-565X(2005)09-0025-05
收稿时间:2004-11-22
修稿时间:2004-11-22

Chinese Question Classification Based on Support Vector Machine
Yu Zheng-tao,Fan Xiao-zhong,Guo Jian-yi. Chinese Question Classification Based on Support Vector Machine[J]. Journal of South China University of Technology(Natural Science Edition), 2005, 33(9): 25-29,34
Authors:Yu Zheng-tao  Fan Xiao-zhong  Guo Jian-yi
Abstract:At present,Chinese question classification is commonly based on the combinatorial rules between the interrogatives and their interrelated words.Because the extraction of the combinatorial rules greatly depends on language knowledge and not all combinatorial rules can be listed,the classification performance is not desirable.As the SVM(Support Vector Machine),a machine learning method based on the statistical theory,possesses excellent discriminating effect on small sample classification,this paper establishes a question classification model based on SVM after the analysis and definition of Chinese question types.The process of the feature selection for question classification is then described in detail.Finally,a question classification experiment is carried out by introducing corresponding semantic features based on syntactic features,with a classification accuracy of 88.7% being(achieved),which indicates that Chinese questions can be excellently classified by means of SVM with the combination of syntactic features and semantic features.
Keywords:question-answering system   question classification    support vector machine    syntactic feature    semantic feature
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号