首页 | 本学科首页   官方微博 | 高级检索  
     

高正则非张量积二维小波的Gr(o)bner基构造
引用本文:李小雄,牛双国. 高正则非张量积二维小波的Gr(o)bner基构造[J]. 河南教育学院学报(自然科学版), 2008, 17(1): 14-17
作者姓名:李小雄  牛双国
作者单位:黄河水利职业技术学院自动化工程系,河南开封,475004;黄河水利职业技术学院职业技能训练中心,河南开封,475004
摘    要:为构造非张量积二维小波,在分析二维小波与滤波器组关系的基础上,研究了小波高正则性的务件,并将其转换成一个关于二维滤波器组系数的高阶多元多项式方程组.由于构成这种方程组的方程的未知数和项数都太多,求解它是一个非常困难的问题,因此采用二维小波滤波器组的阶因式分解表示,将待求的高阶多元多项式方程组分解为两个子方程组,应用计算代数中的Grobner基算法分别求解出两个子方程组的Grobner基,进而求解出2~3正则阶的小波滤波器组的全部参数,最终构造出了图像处理中所需要的正交对称的非张量积二维小波.

关 键 词:正则性  多元多项式方程组  Gr(o)bner基

Construction High Regular No Tensor Product 2-D Wavelets Using Grober Basis
LI Xiaoxiong,NIU Shuangguo. Construction High Regular No Tensor Product 2-D Wavelets Using Grober Basis[J]. Journal of Henan Education Institute(Natural Science Edition), 2008, 17(1): 14-17
Authors:LI Xiaoxiong  NIU Shuangguo
Affiliation:LI Xiaoxiong, NIU Shuangguo (1. Department of Automation Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China; 2. Occupational Skill Training Center, Yellow River Conservancy Technical Institute, Kaifeng 475004, China)
Abstract:To construct no tensor product 2D wavelet, after analyzing the relation between 2D wavelet and filter banks, we study the regularity condition which the high-regular wavelet must satisfy. Then it is made up of a highorder multivariable polynomial system . But this polynomial system has too many variables and items to be solved. The order-factorable function of 2D wavelet filter banks is used, and the high-order multivariable polynomial system is decomposed to two subsystems, all coefficients of 2 - 3 regular wavelet filter banks are obtained by Grobner bases algorithm. So we have constructed the orthogonal symmetry 2D wavelet which is needed in image processing.
Keywords:regularity  multivariable polynomial system  Grobner basis
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号