首页 | 本学科首页   官方微博 | 高级检索  
     

圆域上2阶奇异变系数问题的一种有效的差分法
引用本文:王财群,安静. 圆域上2阶奇异变系数问题的一种有效的差分法[J]. 江西师范大学学报(自然科学版), 2021, 45(5): 514-519. DOI: 10.16357/j.cnki.issn1000-5862.2021.05.10
作者姓名:王财群  安静
作者单位:贵州师范大学数学科学学院,贵州 贵阳 550025
摘    要:针对圆域上2阶奇异变系数问题,提出了一种基于降维格式的有限差分方法.首先,利用极坐标变换,将原问题转化为一系列等价的1维问题;其次,针对每一个1维问题,建立了适当的差分格式,并证明了相应的误差估计;最后,给出了一些数值例子,数值结果表明该算法是非常有效的.

关 键 词:2阶问题  降维格式  有限差分法  误差估计  圆形区域

The Efficient Finite Difference Method for Second Order Singular Variable Coefficient Problems in a Circular Domain
WANG Caiqun,AN Jing. The Efficient Finite Difference Method for Second Order Singular Variable Coefficient Problems in a Circular Domain[J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2021, 45(5): 514-519. DOI: 10.16357/j.cnki.issn1000-5862.2021.05.10
Authors:WANG Caiqun  AN Jing
Affiliation:School of Mathematical Sciences,Guizhou Normal University,Guiyang Guizhou 550025,China
Abstract:The finite difference method based on dimension reduction scheme is proposed for the second order singular variable coefficient problems in a circular domain.Firstly,the original problem is transformed into a series of equivalent one-dimensional problems by using polar coordinate transformation.Then for each one-dimensional problem,the appropriate difference scheme and corresponding error estimate are established.Finally,some numerical examples are given,and the numerical results show that the algorithm is very effective.
Keywords:second-order problem  dimension reduction scheme  finite difference method  error estimation  circular domain
本文献已被 万方数据 等数据库收录!
点击此处可从《江西师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《江西师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号