首页 | 本学科首页   官方微博 | 高级检索  
     

基于全局有向图的商品会话序列推荐算法
引用本文:苗启朋,何丽莉,姜宇,白洪涛. 基于全局有向图的商品会话序列推荐算法[J]. 吉林大学学报(理学版), 2022, 60(2): 361-368. DOI: 10.13413/j.cnki.jdxblxb.2021172
作者姓名:苗启朋  何丽莉  姜宇  白洪涛
作者单位:吉林大学 计算机科学与技术学院, 长春 130012; 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
基金项目:国家自然科学基金;吉林省科技厅自然科学基金
摘    要:针对商品会话序列推荐中传统推荐算法过分依赖临近点击状况, 在一定程度上丢失整体商品访问趋势的问题, 提出一种新的基于全局有向图的商品会话序列推荐算法. 首先, 构建商品会话序列全局有向图, 图中节点为商品, 节点间的弧表示点击次序, 并用图数据库存储该有向图; 其次, 给出在有向图上的全局偏好传播策略, 同时考虑点击时间因素对推荐的重要影响; 最后, 获得待推荐商品的评分. 在Diginetica和Yoochoose标准数据集上, 该算法根据P@20标准, 比传统Item-KNN方法推荐准确率分别提升了6.12%和30.25%; 根据MRR@20标准, 则分别提升了15.04%和33.88%. 实验结果表明, 该全局有向图搜索和评分策略有效.

关 键 词:推荐系统   会话序列   图数据库   全局有向图   全局偏好传播  
收稿时间:2021-04-30

Recommendation Algorithm of Commodity Session Sequence Based on Global Directed Graph
MIAO Qipeng,HE Lili,JIANG Yu,BAI Hongtao. Recommendation Algorithm of Commodity Session Sequence Based on Global Directed Graph[J]. Journal of Jilin University: Sci Ed, 2022, 60(2): 361-368. DOI: 10.13413/j.cnki.jdxblxb.2021172
Authors:MIAO Qipeng  HE Lili  JIANG Yu  BAI Hongtao
Affiliation:College of Computer Science and Technology, Jilin University, Changchun 130012, China; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
Abstract:Aiming at the problem that the traditional recommendation algorithm in commodity session sequence recommendation relied too much on adjacent clicks and lost the overall commodity access trend to a certain extent, we proposed a new commodity session sequence recommendation algorithm based on global directed graph. Firstly, the global directed graph of commodity conversation sequence was constructed. The nodes in the graph were commodities, the arcs between nodes represented the click order, and the directed graph was stored in the graph database. Secondly, the global preference propagation strategy on the directed graph was given, and the important influence of click time on recommendation was considered. Finally, the score of the commodity to be recommended was obtained. On Diginetica and Yoochoose standard data sets, the recommended accuracy of the algorithm was improved by 6.12% and 30.25% respectively compared with the traditional Item-KNN method according to the P@20 standard, according to the MRR@20 standard, the recommended accuracy was improved by 15.04% and 33.88% respectively. The experimental results show that the proposed global directed graph search and scoring strategy is effective.
Keywords: recommendation system  session sequence  graph database  global directed digraph  global preference propagation  
本文献已被 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号