首页 | 本学科首页   官方微博 | 高级检索  
     

基于二次型规划考虑网络丢包的鲁棒状态估计
引用本文:王中杰,易总根. 基于二次型规划考虑网络丢包的鲁棒状态估计[J]. 同济大学学报(自然科学版), 2012, 40(6): 0942-0948
作者姓名:王中杰  易总根
作者单位:同济大学电子与信息工程学院,上海,201804
基金项目:国家自然科学基金项目(71071116),上海市基础研究重点项目(10JC1415300)
摘    要:提出一种可以体现网络丢包的离散时间线性时不变状态空间模型,并将鲁棒状态估计的问题转化为向量优化问题.为了能够快速有效地对该问题进行求解,通过标量化方法将向量优化问题转化为普通的标量二次型规划问题,然后将状态估计问题转化为对标准l1正则化最小平方问题的求解.结合Kalman滤波的更新过程,提出了能够适用于具有数据包丢失情况下的鲁棒状态估计算法,通过仿真实验验证了算法的有效性.

关 键 词:鲁棒状态估计  网络丢包  二次型规划  l1正则化最小平方
收稿时间:2011-04-20
修稿时间:2012-03-28

Robust State Estimation for Network Packet Dropout with Quadratic Programming
WANG Zhongjie and YI Zonggen. Robust State Estimation for Network Packet Dropout with Quadratic Programming[J]. Journal of Tongji University(Natural Science), 2012, 40(6): 0942-0948
Authors:WANG Zhongjie and YI Zonggen
Affiliation:College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China;College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
Abstract:The paper presents a new discrete time linear time invariant state space model which considers the state estimation with the network packet dropout. Based on this model, the robust state estimation problem is transformed into a vector optimization problem. To solve this problem fast and effectively, the vector optimization problem is transformed into a scalar quadratic programming problem by the scalarization method. And with the further work, the initial problem can finally be transformed to solve a l1 regularized least squares problem, which usually has a standard and fast solution. Associating with the Kalman filter updating procedure, the new algorithm which can be adapted to the condition with the network packet dropout is proposed. The simulation results show that the proposed algorithm is effective.
Keywords:robust state estimation  network packet dropout  quadratic programming  l1-regularized least squares
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《同济大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《同济大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号