首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于复数变量求偏导的随机有限元可靠度法
引用本文:靳慧. 一种基于复数变量求偏导的随机有限元可靠度法[J]. 同济大学学报(自然科学版), 2012, 40(6): 0812-0816
作者姓名:靳慧
作者单位:东南大学江苏省工程力学分析重点实验室,江苏南京210096;重庆交通大学桥梁结构工程重点实验室,重庆400074
基金项目:国家自然科学基金项目(51108075)
摘    要:提出一种基于复数变量求偏导的随机有限元可靠度法.将工程中的随机因素设置为复数变量,通过复数函数的泰勒级数展式得到一阶导数的近似计算式.这种求导方法效率高,精度高,应用简单方便,只需在复数空间进行有限元计算,无需对有限元方程进行偏导计算,便可求出响应量的偏导数,进而求得响应量的方差.在随机有限元一次二阶矩的迭代格式中,取复数空间有限元计算结果的实部作为响应量的值,这样在求可靠度系数的迭代过程中,无需再在实数空间进行计算.复数变量法大大简化了随机有限元(SFEM)和随机有限元可靠度(SFEMR)的计算和编程过程,为工程应用提供了一种现实可行的途径.

关 键 词:随机有限元  可靠度  复数变量  偏导数
收稿时间:2011-04-17
修稿时间:2012-04-11

A Stochastic Finite Element Reliability Analysis Method Based on Complex variable Derivative Technique
JIN Hui. A Stochastic Finite Element Reliability Analysis Method Based on Complex variable Derivative Technique[J]. Journal of Tongji University(Natural Science), 2012, 40(6): 0812-0816
Authors:JIN Hui
Affiliation:JIN Hui1,2(1.Jiangsu Key Laboratory of Engineering Mechanics,Southeast University,Nanjing 210096,China;2.Key Laboratory of Bridge-structure Engineering of the Ministry of Communication,Chongqing Jiaotong University,Chongqing 400074,China)
Abstract:A new approach is proposed for stochastic finite element method(SFEM) and reliability analysis by using a complex-variable technique.The random factors in engineering are defined as complex variables,the first derivative formulation can be obtained by the Taylor’s series of a complex function.This derivative method is computationally very accurate,efficient,and very easily implemented.In SFEM,to get the variances of responses,it only needs to implement FEM in complex variables space,without a need of partial derivatives of FEM functions.In the iteration scheme of SFEM reliability analysis,the real parts of complex response is considered as the response value to simplify the process.The complex-variable method greatly simplifies SFEM and reliability program,providing a feasible approach for engineering application.
Keywords:stochastic finite element   reliability   complex variable   derivative
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《同济大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《同济大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号