首页 | 本学科首页   官方微博 | 高级检索  
     

基于CAS-FQL算法的区域交通控制
引用本文:李文,刘智勇. 基于CAS-FQL算法的区域交通控制[J]. 五邑大学学报(自然科学版), 2012, 26(3): 67-73
作者姓名:李文  刘智勇
作者单位:1. 五邑大学信息工程学院,广东江门,529020
2. 五邑大学信息工程学院,广东江门529020 江门职业技术学院,广东江门529000
基金项目:广东省自然科学基金资助项目,广东省高等学校自然科学重点研究项目
摘    要:针对Q-学习算法收敛慢、易陷入局部最优的缺陷,提出了一种基于灾变模糊Q-学习(CAS-FQL)算法的区域交通协调控制方法,即将灾变策略引入到模糊Q-学习算法的学习过程中,以提高和改进Q-学习的寻优能力和学习效率.具体是,利用CAS-FQL算法分别优化路网中各交叉口的周期和相位差,绿信比则采用常规方法优化.TSIS软件交通仿真的结果表明,相比基于Q-学习的控制方法,CAS-FQL算法能显著加快算法的收敛速度、提高交通效率.

关 键 词:区域交通控制  CAS-FQL  灾变策略  Q-学习  模糊控制

Urban Traffic Control Based on Catastrophe-Fuzzy Q-Learning
LI Wen,LIU Zhi-yong. Urban Traffic Control Based on Catastrophe-Fuzzy Q-Learning[J]. Journal of Wuyi University(Natural Science Edition), 2012, 26(3): 67-73
Authors:LI Wen  LIU Zhi-yong
Affiliation:1,2(1.School of Information Engineering,Wuyi University,Jiangmen 529020,China;2.Jiangmen Polytechnic College,Jiangmen 529000,China)
Abstract:In order to solve the problems of Q-learning algorithm’s slow convergence and easily running into the local optimum,this paper puts forward a kind of regional transportation coordination controlling method which is based on Catastrophe-Fuzzy Q-Learning(CAS-FQL) algorithm.The catastrophe strategy is combined into the learning process of the fuzzy Q-learning algorithm to enhance and improve its optimization ability and learning efficiency.Concretely,CAS-FQL algorithm is applied to optimize the cycles and offsets of each intersection in the traffic network,and the split is optimized by conventional method.The results from ISIS traffic simulation platform shows that the catastrophe strategy can accelerate the algorithm convergence speed significantly and improving the traffic efficiency.
Keywords:area traffic control  CAS-FQL  the catastrophe strategy  Q-learning  fuzzy control
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号