首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合优化的平滑l0压缩感知重构算法
引用本文:安澄全,彭军伟. 基于混合优化的平滑l0压缩感知重构算法[J]. 应用科技, 2013, 0(5): 23-28
作者姓名:安澄全  彭军伟
作者单位:哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
基金项目:国家自然科学基金资助项目(61074076).
摘    要:研究压缩感知的重构算法,分析了平滑l0(smoothed l0,SL0)的理论基础.SLO算法通过利用平滑的高斯函数去逼近l0范数,将重构中的l0范数最小化问题转化为求解光滑函数最小值的最优化问题.针对算法中最速下降法存在“锯齿现象”和收敛速度慢等缺点,引入数值最优化理论中的混合优化算法,提出了一种基于混合优化的SL0重构算法(HOSL0).该算法结合了最速下降法和修正牛顿法的优点,提高了算法的重构精度和速度.仿真实验表明,HOSL0算法与同类算法相比性能有明显提高,同时在重构速度上比BP算法快了2个数量级.

关 键 词:压缩感知  稀疏重构  光滑l0范数  修正牛顿法  混合优化

Sparse recovery using smoothed l0 based on hybrid optimization algorithm
AN Chengquan,PENG Junwei. Sparse recovery using smoothed l0 based on hybrid optimization algorithm[J]. Applied Science and Technology, 2013, 0(5): 23-28
Authors:AN Chengquan  PENG Junwei
Affiliation:( College of Information and Commtmication Engineering, Harbin Engineering University, Harbin 150001, China)
Abstract:This paper researches the reconstruction algorithm of compressive sensing, analyzes the theoretical basis of smoothed l0 algorithm (SL0). Through the use of a sequence of smoothed Gauss functions to approximate the l0 norm, the problem of minimization of the lo norm in the reconstruction can be transformed into a convex optimization problem for the smoothed function. This paper proposes a new reconstruction algorithm to overcome the shortcomings of the gradient method, such as "notched effect" and the slow convergence. The algorithm using Smoothed l0 based on Hybrid Optimization algorithm (HOSL0) combines the advantages of the gradient method and the revised Newton method to improve the accuracy and speed of sparse recovery. The numerical simulation results show that the proposed algorithm has fast convergence and better accuracy compared with some existing similar methods. It is experimentally shown that HOSL0 algorithm is about two orders of magnitude faster than backpropagation algorithm under the same conditions.
Keywords:compressive sensing  sparse recovery  smoothed l0 norm  revised Newton method  hybrid optimization
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号