首页 | 本学科首页   官方微博 | 高级检索  
     

传染病动力学常微分方程模型解的大时间性质
引用本文:陈守信,黄德成,严正香. 传染病动力学常微分方程模型解的大时间性质[J]. 河南大学学报(自然科学版), 2009, 39(6)
作者姓名:陈守信  黄德成  严正香
作者单位:河南大学,数学与信息科学学院,河南,开封,475001;信阳职业技术学院,数学与计算机科学系,河南,信阳,464000
基金项目:河南省教育厅自然科学基金项目 
摘    要:研究了传染病常微模型三次系统解的非负性、整体解的存在唯一性,并利用Liapunov函数法和霍维茨准则等研究了非负平衡解的稳定性及渐近稳定性.

关 键 词:传染病的常微模型  整体解存在唯一性  平衡解的稳定性和渐近稳定性

The Long-Time Behavior of Solutions to Infectious Disease Dynamics of the Ordinary Differential Equation Model
CHEN Shou-xin,HUANG De-cheng,YAN Zheng-xiang. The Long-Time Behavior of Solutions to Infectious Disease Dynamics of the Ordinary Differential Equation Model[J]. Journal of Henan University(Natural Science), 2009, 39(6)
Authors:CHEN Shou-xin  HUANG De-cheng  YAN Zheng-xiang
Abstract:This paper mainly discussed the non-negativity and the global existence of solution to infectious disease model. Moreover, it applied Liapunov function and the Routh-Hurwitz criterion to the study of the stability and asymptotic stability of the non-negative equilibrium solutions to the ODE systems. The conclusions can guide research in the prediction and control of infectious disease.
Keywords:infectious disease ODE model  stability and asymptotic stability of non-negative equilibrium solutions  existence and uniqueness of global solution
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号