首页 | 本学科首页   官方微博 | 高级检索  
     

基于长短时记忆神经网络的抽油机井故障智能预警
引用本文:褚浩元,张傲雪,李情霞,黄晓东,李喧喧,赵岩龙. 基于长短时记忆神经网络的抽油机井故障智能预警[J]. 科学技术与工程, 2024, 24(9): 3646-3653
作者姓名:褚浩元  张傲雪  李情霞  黄晓东  李喧喧  赵岩龙
作者单位:中国石油天然气股份有限公司新疆油田分公司工程技术研究院;中国石油大学(北京)克拉玛依校区;中国石油天然气股份有限公司新疆油田分公司陆梁油田作业区
基金项目:国家自然科学基金青年科学基金(52004301);中国科学院“西部青年学者” (2021-XBQNXZ-033)
摘    要:准确预测抽油机井故障对油田生产具有重要意义。针对新疆油田某区块抽油机井故障情况,统计了500口油井的生产数据,明确了结垢、结蜡、杆管腐蚀、杆管疲劳、杆管偏磨5种引发抽油机井故障的主要因素;基于长短时记忆神经网络(long short-term memory networks, LSTM),构建了油井故障智能预警模型;筛选出影响油井故障的14种特征参数进行小波降噪处理,借助自适应矩估计算法对模型进行训练与测试。研究结果表明,模型预测准确率为96.81%,能够为油田提供较为准确的抽油机井故障预警信息。

关 键 词:故障预测  LSTM  小波降噪  神经网络  抽油机井
收稿时间:2023-05-25
修稿时间:2023-12-27

Research on Intelligent Early Warning of Pumping Machine Well Fault Based on Long Short-Term Memory Neural Network
Chu Haoyuan,Zhang Aoxue,Li Qingxi,Huang Xiaodong,Li Xuanxuan,Zhao Yanlong. Research on Intelligent Early Warning of Pumping Machine Well Fault Based on Long Short-Term Memory Neural Network[J]. Science Technology and Engineering, 2024, 24(9): 3646-3653
Authors:Chu Haoyuan  Zhang Aoxue  Li Qingxi  Huang Xiaodong  Li Xuanxuan  Zhao Yanlong
Affiliation:Research Institute of Science and Technology, PetroChina Xinjiang Oilfield Company
Abstract:Accurately predicting the fault of rod-pumped wells is of great significance for oilfield production. Aiming at the fault situation of rod-pumped wells in a block of Xinjiang Oilfield, the production data of 500 wells were collected, and the 5 main factors causing the fault of pumping Wells were identified, such as scale, wax formation, rod corrosion, rod fatigue and rod partial wear; Based on Long Short-Term Memory Networks (LSTM), the intelligent early-warning model of oil well failure is constructed; By selecting 14 characteristic parameters that affect oil well faults for wavelet denoising, the model is trained and tested with the help of adaptive moment estimation algorithm. The findings suggest that the prediction accuracy of the model is 96.81%, which can provide more accurate early warning for rod-pumped well faults.
Keywords:fault prediction   LSTM   wavelet denoising   neural network   rod-pumped well
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号