摘 要: | 准确预测抽油机井故障对油田生产具有重要意义。针对新疆油田某区块抽油机井故障情况,统计了500口油井的生产数据,明确了结垢、结蜡、杆管腐蚀、杆管疲劳、杆管偏磨5种引发抽油机井故障的主要因素;基于长短时记忆神经网络(long short-term memory networks, LSTM),构建了油井故障智能预警模型;筛选出影响油井故障的14种特征参数进行小波降噪处理,借助自适应矩估计算法对模型进行训练与测试。研究结果表明,模型预测准确率为96.81%,能够为油田提供较为准确的抽油机井故障预警信息。
|