首页 | 本学科首页   官方微博 | 高级检索  
     

正定Hermite阵的行列式上界与Hadamard不等式的改进
引用本文:屠伯埙. 正定Hermite阵的行列式上界与Hadamard不等式的改进[J]. 复旦学报(自然科学版), 1986, 0(4)
作者姓名:屠伯埙
作者单位:复旦大学数学系
摘    要:本文提供一个改进的正定Hermite阵的行列式上界估计式。由此可将Hadamard关于任意非奇异阵的行列式的著名不等式作真正的改进。本文还给出若干非正规阵的行列式新的上界估计式。

关 键 词:正定Hermite阵  行列式  Hadamard不等式  非奇异阵  非正规阵

UPPER BOUNDS FOR DETERMINANTS OF THE POSITIVEDEFINITE HERMITIAN MATRICES AND AN IMPROVEMENT OF HADANARD INEQUALITY
Tu Boxun. UPPER BOUNDS FOR DETERMINANTS OF THE POSITIVEDEFINITE HERMITIAN MATRICES AND AN IMPROVEMENT OF HADANARD INEQUALITY[J]. Journal of Fudan University(Natural Science), 1986, 0(4)
Authors:Tu Boxun
Affiliation:Mathematics Department
Abstract:This paper provided an improved inequality on upper bounds for the determinant of the positivedefinite Hermitian matrix. By using this inequality, an improvement of the famous Hadanard inequality on the upper bound of the determinant of any nonsingular matrix is given. This paper also represents some new results on upper bounds for the determinants of nonnormal matrices.
Keywords:positivedefinite Hermitian matrix  determinant  Hadamard inequality  nonsingular matrix  nonnormal matrix
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号