首页 | 本学科首页   官方微博 | 高级检索  
     

一类非线性滞后系统的自整定PID控制
引用本文:姚荣斌,孙红兵. 一类非线性滞后系统的自整定PID控制[J]. 淮阴师范学院学报(自然科学版), 2007, 6(4): 289-292
作者姓名:姚荣斌  孙红兵
作者单位:1. 连云港师范高等专科学校,自然科学系,江苏,连云港,222006
2. 南京航空航天大学,智能材料与结构航空科技重点实验室,江苏,南京,210016
基金项目:国家自然科学基金资助项目(50420120133),淮安科技发展项目(HAG07022)
摘    要:针对采用传统PID控制一类非线性滞后系统,难以获得满意的控制效果,提出基于RBF神经网络的PID控制参数自整定的方法.利用具有在线能力的最近零聚类学习算法,训练RBF神经网络,从而自适应调整系统的控制参数.仿真结果证明了,该控制策略不仅能使非线性滞后系统具有良好的动态跟踪性能,而且具有很好的抗干扰能力.

关 键 词:RBF神经网络  非线性滞后系统  最近邻聚类算法  自整定PID控制器
文章编号:1671-6876(2007)04-0289-04
收稿时间:2007-10-08
修稿时间:2007-10-08

Self-tuning PID Controller for A General Nonlinear Hysteretic System
YAO Rong-bin,SUN Hong-bing. Self-tuning PID Controller for A General Nonlinear Hysteretic System[J]. Journal of Huaiyin Teachers College(Natrual Science Edition), 2007, 6(4): 289-292
Authors:YAO Rong-bin  SUN Hong-bing
Affiliation:1 .Department of Natural Science, Lianyungang Teachers College, Lianyungang Jangsu 222006, China;2. The Aeronautical Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210016, China
Abstract:To solve the question that the classic PID controller with a general nonlinear hysteretic object was impossible to insure the accuracy of the system.The method of self-tuning PID controller based on the RBF neural network was proposed.In order to adaptive tune the parameters of PID controller,the nearest neighbors clustering algorithm was used to train the RBF neural network.With the help of simulation,the control strategy can not only have a favorable dynamic tracking performance to nonlinear hysteretic system,but also resistance to disturbance of system.
Keywords:RBFNN  nonlinear hysteretic system  nearest neighbor clustering algorithm  self-tuning PID controller
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号