首页 | 本学科首页   官方微博 | 高级检索  
     

插值矩阵法解正交异性轴对称圆柱壳弯曲问题
引用本文:牛忠荣,薛祖卫. 插值矩阵法解正交异性轴对称圆柱壳弯曲问题[J]. 东南大学学报(自然科学版), 1992, 0(5)
作者姓名:牛忠荣  薛祖卫
作者单位:东南大学合肥工业大学数力系,东南大学土木工程系
摘    要:用数值法求解常微分方程边值问题,目前流行的是差分法、试射法、配点法和有限元法。苏联学者A·Φ·斯米乐诺夫在求解梁柱问题时,创建了一种数值法——积分矩阵法,用于求解两点边值问题,文献[2]在此基础上采用分段多项插值,建立了插值矩阵法,该法简洁、通用性强、收敛快、计算稳定,求得的y(x),y′(x),y″(x),……有相同的精度。 1插值矩阵法插值矩阵法可处理如下的m阶线性常微分方程:


The Application of Interpolating Matrix Method in the Bending Problem of Orthotropic Axial Symmetrical Cylindrical Shells
Niu Zhongrong. The Application of Interpolating Matrix Method in the Bending Problem of Orthotropic Axial Symmetrical Cylindrical Shells[J]. Journal of Southeast University(Natural Science Edition), 1992, 0(5)
Authors:Niu Zhongrong
Affiliation:Niu Zhongrong (Hefei University of Technology) Xue Zuwei (Departement of Civil Engineering)
Abstract:Interpolating matrix method is a numerical method for solving boundary value problem of ordinary differential equations. This paper gives the governing differential equation of bending problem of orthotropic axial-symmetrical cylindrical shells. Interpolating matrix method shows how to calculate these ones by means of an example.
Keywords:cylindrical shells   bending   numerical solutions/interpolating matrix method.variable stiffness  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号