首页 | 本学科首页   官方微博 | 高级检索  
     

求解作业车间调度问题的改进自适应遗传算法
引用本文:王万良,吴启迪,宋毅. 求解作业车间调度问题的改进自适应遗传算法[J]. 系统工程理论与实践, 2004, 24(2): 58-62. DOI: 10.12011/1000-6788(2004)2-58
作者姓名:王万良  吴启迪  宋毅
作者单位:(1)浙江工业大学信息工程学院;(2)同济大学电子与信息工程学院
基金项目:国家自然科学基金(60374056),国家863计划项目(2002AA412610),浙江省科技计划项目(012047)
摘    要:根据当前代种群中的最优个体应该保留,但也要一定交叉与变异概率的思想,提出了改进的自适应遗传算法,开发了工程应用软件包,应用于求解作业车间调度问题,显著提高了收敛速度.特别是在搜索过程中系统能够自动给定交叉概率和变异概率,符合工程实际需要.

关 键 词:生产调度  作业车间调度  遗传算法  自适应  组合优化   
文章编号:1000-6788(2004)02-0058-05
修稿时间:2003-02-27

Modified Adaptive Genetic Algorithms for Solving Job-shop Scheduling Problems
WANG Wan-liang,WU Qi-di,SONG Yi WT. Modified Adaptive Genetic Algorithms for Solving Job-shop Scheduling Problems[J]. Systems Engineering —Theory & Practice, 2004, 24(2): 58-62. DOI: 10.12011/1000-6788(2004)2-58
Authors:WANG Wan-liang  WU Qi-di  SONG Yi WT
Affiliation:(1)College of Information Engineering,Zhejiang University of Technology;(2)College of Electron and Information Engineering,Tongji University
Abstract:Job-shop scheduling problem(JSP) is one of the most difficulty combinatorial optimization problems. It is widely applied to productive management of enterprise. It is one of the most important links on CIMS. This paper proposed improved adaptive genetic algorithms for solving job-shop scheduling problems according to the idea that the best individual on current generation should be kept to next generation, but the best individual should be crossed and mutated by some probability. The software package for these modified adaptive genetic algorithms are programmed and applied to solving job-shop scheduling problems. These modified methods increase the convergence rate. Especially, the crossover probability and mutation probability are given automatically in the search process. It is important in the engineering.
Keywords:production scheduling  job-shop scheduling genetic algorithms  adaptive  combinatorial optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号