摘 要: | 文献〔1〕和〔2〕分别证明了如下: 定理:令S和T是完备度量空间(X,d)到自身的交换映射,对所有x,y∈X,满足不等式 d(Sx,Ty)《k·max{d(x,y),d(x,Ty),d(y,Sx),d(x,Sx)d(y,Ty)}其中0《k<1,且不等式 Sup{d(S~(r 1)T~nx,S~rT~nx),d(S~rT~(n 1)x,S~rT~nx):r,n=0,1,2…}<∞对某些特殊的x∈X成立,则S和T有唯一的公共不动点z,而且,z是S和T的唯一不动点。定理2 令S和T是完备度量空间(X,d)到自身的映射,对所有的x,y∈X满足不等式
|