首页 | 本学科首页   官方微博 | 高级检索  
     

瓦斯浓度预测的混沌时序RBF神经网络模型
引用本文:赵金宪,于光华. 瓦斯浓度预测的混沌时序RBF神经网络模型[J]. 黑龙江科技学院学报, 2010, 20(2): 131-134
作者姓名:赵金宪  于光华
作者单位:黑龙江科技学院,电气与信息学院,哈尔滨,150027
基金项目:黑龙江省研究生创新科研基金 
摘    要:为对煤矿瓦斯质量浓度进行精确预测,针对瓦斯质量浓度的非线性特点,在验证其时间序列具有混沌特性的基础上,建立了基于混沌理论和径向基神经网络的预测模型。将实测瓦斯质量浓度时间序列进行相空间重构得到训练样本,并利用MATLAB仿真软件进行编程预测分析。结果表明,相对误差为0~3%,均方差为0.005 6,预测效果良好。实例验证该预测模型切实可行。

关 键 词:瓦斯质量浓度  混沌时间序列  神经网络  相空间重构

Model of chaotic sequence and RBF neural network on gas concentration forecast
ZHAO Jinxian,YU Guanghua. Model of chaotic sequence and RBF neural network on gas concentration forecast[J]. Journal of Heilongjiang Institute of Science and Technology, 2010, 20(2): 131-134
Authors:ZHAO Jinxian  YU Guanghua
Affiliation:(College of Electric and Information Engineering,Heilongjiang Institute of Science and Technology,Harbin 150027,China)
Abstract:Directed at the accurate prediction of the coal gas concentration,this paper proposes a chaos theory and RBF neural network-forecasting model,established according to the nonlinear characteristics of gas concentration and the validated chaotic characteristics of time series for gas concentrations.The reconstruction of the gas concentration time series for the training samples and the use of MATLAB simulation to forecasting analysis show that the relative prediction error ranging from 0 to 3% and the mean square error of 0.005 6 justify the feasibility of prediction model.
Keywords:gas concentration  chaotic time series  neural network  phase space reconstruction
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号