基于模糊遗传算法的工业过程控制参数优化研究 |
| |
引用本文: | 王斌,王孙安,杜海峰. 基于模糊遗传算法的工业过程控制参数优化研究[J]. 西安交通大学学报, 2004, 38(1): 56-59 |
| |
作者姓名: | 王斌 王孙安 杜海峰 |
| |
作者单位: | 1. 西安交通大学机械工程学院,710049,西安 2. 西安电子科技大学雷达处理重点实验室,710071,西安 |
| |
摘 要: | 针对复杂工业过程控制要求多样性、控制参数难调整的问题,提出了一种控制参数优化方法.其中,利用模糊评判方法设计了模糊适应度函数以改进标准遗传算法,把控制要求分解成多个对控制结果模糊评判的因素,由于其具有不同权重,因此控制结果与控制要求的接近程度就转化成了对遗传算法中个体(控制参数)的适应度.应用该算法优化了生物发酵罐温度控制器的控制参数,实验表明,控制器的控制精度、温度变化平稳性、能耗、电磁阀开关频率等指标均得到了改善,能够较好地解决复杂工业过程中控制参数优化的问题.
|
关 键 词: | 复杂工业过程 模糊遗传算法 参数优化 |
文章编号: | 0253-987X(2004)01-0056-04 |
修稿时间: | 2003-04-15 |
Parameter Optimization in Industrial Process Control Based on Fuzzy Genetic Algorithm |
| |
Abstract: | To solve the problem of the diverse control requirements and turning the control parameters in the modern complex industrial process, an approach for parameter optimization was proposed. In this approach, fuzzy evaluating approach was used to improve the simple genetic algorithms (SGA), and a fuzzy fitness function was designed to divide those control requirements into many evaluating factors of control result with different weights. The fitness of the individual shows the approximate degree of control requirements and the result controlled by individual (i.e. control parameters). The approach was used to optimize the control parameters of temperature controller in tower type fermenter. Experiments show that control indices, such as control error, the stableness of temperature change, energy consumption, and the frequency of electromagnetic value, are improved and this approach can successfully optimize the parameters in complex industrial process. |
| |
Keywords: | complex industrial process fuzzy genetic algorithms parameter optimization |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
|