首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  国内免费   2篇
丛书文集   2篇
教育与普及   1篇
综合类   50篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
化学合金法研制Co-Fe-Ce-B非晶合金磁性纳米粒子   总被引:1,自引:0,他引:1  
利用化学合金法,得到了Co-Fe-Ce-B系多元钴基非晶合金磁性纳米粒子.通过化学分析、X射线衍射(XRD)、透射电镜(TEM)、差示扫描量热分析仪(DSC)以及物理吸附仪,对其组分比例、粒径、结构和性能进行了研究.测试结果表明:在较温和的试验条件下,利用化学合金,能实现纳米粒径的Co-Fe-Ce-B非晶态合金磁性纳米粒子的合成.  相似文献   
2.
从约化BCS哈密顿量出发,考虑随机矩阵理论中高斯正交系综和高斯辛系综所对应的电子能级分布,用配分函数的静态路径积分表示方法,计算了常规超导金属纳米粒子正常-超导相变临界区域附近的磁化率,得到了量子效应、奇偶效应、小尺寸效应导致超导金属纳米粒子的磁化率偏离块状超导体的磁化率的性质曲线。  相似文献   
3.
应用随机矩阵理论研究了金属纳米粒子的超导电性,特别是其临界超导半径。将计算结果同其他理论与实验相比较后发现:引入随机矩阵理论后得出的超导图像,与实验结果定性吻合。在理论上能同时给出纳米粒子超导性增强和减弱效应。  相似文献   
4.
考虑了奇/偶电子数分布,从配分函数出发,用静态路径近似(SPA)方法和BCS方法计算了随机矩阵理论中高斯正交系综(GOE)所对应的电子能级分布对超导纳米粒子的电子比热的影响,得到了弱自旋-轨道耦合和弱磁场中和奇/偶电子数分布下的电子比热,并做了简单分析.经过计算和分析,发现粒子尺寸和奇/偶电子数对电子比热和转变温度有影响.  相似文献   
5.
通过简单的溶液浸泡-热分解方法成功地在氧化多孔硅的孔中沉积了纳米银粒子,形成了银/氧化多孔硅/硅的复合结构.用X射线衍射光谱(XRD)和扫描电子显微镜(SEM)表征了多孔硅上纳米银粒子的存在.  相似文献   
6.
介绍多种铝合金材料及相关成型方法,性能,用途,优缺点,广阔前景。着重介绍2004年日本制钢所由纳米微细结晶粒构成的锌铝合金的性能和实用前景。  相似文献   
7.
采用随机矩阵理论,考虑能级分离、系统电子总自旋和平均能级间距及转变温度对电子热容的影响,用静态路径近似(SPA)计算了高斯系综中正交系综(GOE)、辛系综(GSE)所对应的电子能级分布下处于弱磁场中超导纳米粒子的电子热容.计算中取了几个典型的温度和电子自旋,并对计算结果做了分析.  相似文献   
8.
基于钢中二相粒子对钢的强化作用理论,向钢液中直接加入纳米氧化物粒子强化钢铁材料成为研究热点。目前国内的研究主要集中于粒子的添加方法、种类、影响等方面,但都回避了纳米粒子在钢中能否均匀分散的问题,也未见工业化应用的报道。国际上,研究主要集中于纳米粒子的制备及处理方法等方面,定性分析了粒子的分散性问题。为了使粒子能够均匀分散,粒子的制备和添加方法依然是难点,有关纳米粒子在钢液中的运动行为,热力学稳定性等问题还有待于进一步深入研究。  相似文献   
9.
纳米SiO2颗粒在二维声场流化床中的流化特性   总被引:1,自引:0,他引:1  
以原生纳米SiO2颗粒为物料,在横截面为130×10mm2、高为500mm的二维床中,研究了外加声波频率和声压对纳米颗粒流化特性的影响。结果表明:无声场时,流化过程中会出现裂纹和沟流,临界流化速度较高,有明显的颗粒带出;适当的低频强声波的引入能很好地抑制甚至消除沟流,大大降低流化床中纳米颗粒聚团的尺寸,使之在低气速下实现稳定流化,从而显著改善纳米颗粒的流化质量。  相似文献   
10.
引入不同孔径的光纤传输激光和散射光子,不同孔径的Y形光纤传输入射光和散射光,采用光子相关光谱法(PCS)设计了纳米颗粒测量系统.讨论了光纤芯径、显微物镜的数值孔径、温度和散射角度对测量结果的影响.实验结果表明,温度在13~22 ℃超净间中,该系统能准确地测量纳米颗粒粒度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号