首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   2篇
丛书文集   2篇
综合类   20篇
  2011年   2篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有22条查询结果,搜索用时 843 毫秒
1.
本文采用变分法研究了量子阱中类氢杂质的束缚能的压力效应,尤其在阱较窄的情形下,其压力效应更为显著.  相似文献   
2.
在有效质量近似下,利用变分方法研究了像势对量子阱中类氢杂质结合能的影响。计算中考虑到了阱和垒中电子有效质量的不同。数值计算结果表明:阱和垒中质量的不连续只对阱宽较窄的区域有影响,而像势则在整个区域都有影响.对于阱和垒中介电常数之比较大和阱宽较小的量子阱,考虑像势对阱中杂质结合能的修正是非常必要的  相似文献   
3.
在有效质量近似下,运用变分方法,考虑内建电场效应和量子点(QD)的三维约束效应的情况下,研究了类氢施主杂质在量子点中的位置对Ⅲ族氮化物量子点中束缚激子结合能的影响。结果表明:当类氢施主杂质位于量子点中心时,对于InxGa1-xN/GaN量子点,量子点高度和In含量存在临界值,当参数大于临界值时,约束在QD中束缚激子的结合能升高,激子态的稳定性增强,提高了激子的离解温度,使人们能在较高的温度条件下观察到半导体量子点吸收谱中的激子峰。而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的结合能升高,载流子被更强的约束在量子点中。说明对GaN/AlxGa1-xN量子点,杂质使人们能在更高温度下观察到量子点中的激子。类氢施主杂质位于量子点上界面时,束缚激子的结合能最大,系统最稳定;随着施主杂质下移,激子结合能减小,激子的离解温度下降。  相似文献   
4.
本文在Z标度类氢模型算法下,采用库仑-玻恩交换近似和改善的屏蔽常数定义,计算了类钠铜离子和类钠水窗两端的硒和锝离子的内外壳层电子的电子碰撞直接电离和非直接激发自电离的速率系数和截面.  相似文献   
5.
高剥离态离子nl壳层的能量计算   总被引:1,自引:0,他引:1  
采用改进的屏蔽氢离子模型计算高剥离态离子的nl壳层能量,并与实验值及其他理论值进行了比较。  相似文献   
6.
用改进的屏蔽氢离子模型计算了氩原子的逐次电离能,并分别与R.More屏蔽氢离子模型和实验结果作了比较。  相似文献   
7.
本文根据缔合拉盖尔函数的性质,导出了计算任意幂次算符r~k矩阵元和平均值的计算公式,该公式比较文献[1]中的结果更为简洁全面。并利用正负整数幂平均值之间的关系和各次幂平均值的递推关系,得出了一种计算任意幂次算符r~k平均值的数值结果或简单表达式的新方法,还将此简易方法推广到了多电子原子或离子体系的模型势理论中。  相似文献   
8.
高Z高剥离态离子基态总能量的计算   总被引:1,自引:1,他引:0  
采用改进的屏蔽氢离子模型计算了高Z元素高剥离态离子基态总能量,并以Z= 75~82 元素为例计算了n≤2 的离剥离态离子基态总能量的值.  相似文献   
9.
在考虑内建电场效应和量子点(QD)的三维约束效应的情况下,运用变分方法研究了类氢施主杂质的位置对Ⅲ族氮化物量子点中束缚激子态的影响.结果表明:当类氢施主杂质位于量子点中心,InxGa1-xN/GaN量子点的高度和In含量大于临界值时,约束在QD中激子的基态能降低,激子态的稳定性增强,在较高的温度下观察到半导体量子点吸收谱中的激子峰,发光波长增大.而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的基态能降低,杂质可能使在更高温度下观察到GaN/AlxGa1-xN量子点中的激子,发光波长增大.研究发现类氢施主杂质位于量子点上界面时,激子的基态能最小,系统最稳定;随着施主杂质下移,激子基态能增加,激子的解离温度下降,发光波长减小.  相似文献   
10.
利用屏蔽氢离子模型SHM及其改进后的考虑能级分裂的屏蔽氢离子模型SHML分别计算了S、Fe、Nb、Dy、Pa的Ne-like离子的能量,SHM和SHML模型均具有清晰、快捷的特点,且改进后的SHML模型较SHM模型具有较大的优势,特别是内层能量的修正更为明显,更接近较好的DAVID结果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号