首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
教育与普及   1篇
现状及发展   1篇
综合类   25篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   12篇
  2010年   1篇
  2009年   6篇
  2008年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
In this paper,by taking the water-water balanced counterflow heat exchanger as an example,the entransy dissipation theory is applied to optimizing the design of heat exchangers.Under certain conditions,the optimal duct aspect ratio is determined analytically.When the heat transfer area or the duct volume is fixed,analytical expressions of the optimal mass velocity and the minimal entransy dissipation rate are obtained.These results show that to reduce the irreversible dissipation in heat exchangers,the heat exchange area should be enlarged as much as possible,while the mass velocity should be reduced as low as possible.  相似文献   
2.
Conservation equations for sensible and latent entransy are established for flue gas turbulent heat transfer with condensation in a tube, and the entransy dissipation expression is deduced. The field synergy equation is obtained on the basis of the extremum entransy dissipation principle for flue gas turbulent heat transfer with condensation. The optimal velocity field is numerically obtained by solving the field synergy equation. The results show that the optimal velocity field contains multiple longitudinal vortices near the tube surface. These improve the synergy not only between the velocity and temperature fields but also between the velocity and vapor concentration fields. Therefore, the turbulent heat and mass transfers are significantly enhanced.  相似文献   
3.
In general,thermal processes can be classified into two categories: heat-work conversion processes and heat transfer processes. Correspondingly,the optimization of thermal processes has to have two different criteria:the well known entropy generation minimization method and the recently proposed entransy dissipation maximization method. This study analyzes the thermal issues in a heat exchanger group,and optimizes the unit arrangements under different constraints based on a suitable optimization crite-rion. The result indicates that the principle of minimum entropy generation rate is valid for optimizing heat exchangers in a ther-modynamic cycle with given boundary temperatures. In contrast,the entransy dissipation maximization is more suitable in heat exchanger optimizations involving only heat transfer processes. Furthermore,the entropy generation rate induced by dumping used streams into ambient surroundings has to be taken into account,except for that originating from the hot and cold-ends of heat exchangers,when using the entropy generation minimization to optimize heat exchangers undergoing a thermodynamic cycle.  相似文献   
4.
换热器内随温度变化的黏度对两流体(火积)的影响   总被引:1,自引:0,他引:1  
郭江峰  许明田  程林 《科学通报》2011,56(23):1934-1939
以橄榄油为例来研究黏度固定和黏度为温度函数的情况下黏性热效应对顺流换热器内两流体 width=相似文献   
5.
基于火积理论分析得出了高炉冷却壁的火积平衡方程式以及冷却壁中的火积耗散.在此基础上定义了高炉冷却壁的热阻.根据最小热阻原理,提出用高炉冷却壁的热阻来评价其传热性能的优劣的观点,通过实例说明了高炉冷却壁热阻的计算方法,比较了不同冷却水管间距下冷却壁热面最高温度及热阻之间的关系.结果表明,随着冷却水管间距的改变,冷却壁热阻与热面最高温度有相同的变化趋势.在一定的边界条件下,高炉冷却壁的热阻可以评价其传热性能的优劣.  相似文献   
6.
Yuan  Fang  Chen  Qun 《科学通报(英文版)》2012,57(6):687-693
The wide application of evaporative cooling techniques in which the optimization criteria form the theoretical basis for improving evaporative cooling performance is essential for energy conservation and emission reduction.Based on exergy analysis and the entransy dissipation-based thermal resistance method,this contribution aims to investigate the effects of flow and area distributions in the optimization of the performance of indirect evaporative cooling systems.We first establish the relationships of exergy efficiency,entransy dissipation-based thermal resistance and cooling capacity of a typical indirect cooling system.Using the prescribed inlet parameters,the heat and mass transfer coefficients and the circulating water mass flow rate,we then numerically validate that when the cooling capacity reaches a maximum,the entransy dissipation-based thermal resistance falls to a minimum while the exergy efficiency is not at an extreme value.The result shows that the entransy dissipation-based thermal resistance,not the exergy efficiency,characterizes the heat transfer performance of an evaporative cooling system,which provides a more suitable method for evaluating and analyzing the indirect cooling system.  相似文献   
7.
In terms of the analogy between mass and heat transfer phenomena, a new physical quantity, i.e. mass entransy, is introduced to represent the ability of an object for transferring mass to outside. Meanwhile, the mass entransy dissipation occurs during mass transfer processes as an alternative to measure the mass transfer irreversibility. Then the concepts of mass entransy and its dissipation are used to develop the extremum principle of mass entransy dissipation and the corresponding method for convective mass transfer optimization, based on which an Euler's equation has been deduced as the optimization equation for the fluid flow to obtain the best convective mass transfer performance with some specific constraints. As an example, the ventilation process for removing gaseous pollutants in a space station cabin with a uniform air supply system has been optimized to reduce the energy consumption of the ventilation system and decrease the contaminant concentration in the cabin. By solving the optimization equation, an optimal air velocity distribution with the best decontamination performance for a given viscous dissipation is firstly obtained. With the guide of this optimal velocity field, a suitable concentrated air supply system with appropriate air inlet position and width has been designed to replace the uniform air supply system, which leads to the averaged and the maximum contaminant concentrations in the cabin been decreased by 75% and 60%, respectively, and the contaminant concentration near the contaminant source surface been decreased by 50%, while the viscous dissipation been reduced by 30% simultaneously.  相似文献   
8.
Entransy is a physical quantity describing heat transfer ability, and heat transfer is accompanied by entransy transfer. Thermal energy is conserved in its transfer process, while entransy is dissipated because of the irreversibility of its transfer process. As a result, entransy transfer must have its rules which are different from those of thermal energy transfer. Based on the definition of entransy, an entransy transfer equation is derived, which describes the entransy transfer processes of a multi-component viscous fluid subject to heat transfer by conduction and convection, mass diffusion and chemical reactions. The expressions of entransy flux and entransy dissipation are obtained simultaneously, and their physical mechanism is clarified. And further, the theory and method of optimizing heat transfer applying the entransy transfer equation to the steady-state convection heat transfer process are expounded. The minimum thermal resistance principle and the entransy dissipation extremum principle are obtained by applying the steady-state entransy transfer equation to the steady-state convection heat transfer process. The cases of the single-component steady-state convection heat transfer and the steady-state heat conduction show the application of the theory and method.  相似文献   
9.
The applicability of the extremum principles of entropy generation and entransy dissipation is studied for heat exchanger optimization. The extremum principle of entransy dissipation gives better optimization results when heat exchanger is only for the purpose of heating and cooling, while the extremum principle of entropy generation is better for the heat exchanger optimization when it works in the Brayton cycle. The two optimization principles are approximately equivalent when the temperature drops of the streams in a heat exchanger are small. Supported by Major State Basic Research Development Program of China (Grant No. 2007CB206901)  相似文献   
10.
The geometry of a heat generating volume cooled by forced convection is optimized by applying the entransy dissipation extremum principle and constructal theory, while the optimal spacing between the adjacent tubes and the optimal diameter of each tube are obtained based on entransy dissipation rate minimization. The results of this work show that the optimal constructs based on entransy dissipation rate minimization and maximum temperature difference minimization, respectively, are clearly different. For the former, the porosity of the volume of channels allocated to the heat generating volume is 1/2; while for the latter, the larger the porosity is, the better the performance will be. The optimal construct of the former greatly decreases the mean thermal resistance and improves the global heat transfer performance of the system compared with the optimal construct of the latter. This is identical to the essential requirement of the entransy dissipation extremum principle that the required heat transfer temperature difference is minimal with the same heat transfer rate (the given amount of heat generated in the heat generating volume) based on the entransy dissipation extremum principle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号