首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
现状及发展   18篇
综合类   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有19条查询结果,搜索用时 703 毫秒
1.
Neurobiology and neuroimmunology of Tourette’s syndrome: an update   总被引:4,自引:0,他引:4  
Tourettes syndrome is a childhood-onset neuropsychiatric disorder characterized by the presence of both multiple motor and vocal tics. While the pathogenesis at a molecular and cellular level remains unknown, structural and functional neuroimaging studies point to the involvement of the basal ganglia and related cortico-striato-thalamo-cortical circuits as the neuroanatomical site for Tourettes syndrome. Moreover, Tourettes syndrome has a strong genetic component, and considerable progress has been made in understanding the mode of transmission and in identifying potential genomic loci. Summaries of recent findings in these areas will be reviewed, followed by a critical overview of findings both supporting and challenging the proposed autoimmune hypothesis of Tourettes syndrome. We conclude that Tourettes syndrome is a heterogeneous disorder, and that immune factors may indeed be involved in some patients.Received 12 August 2003; received after revision 8 October 2003; accepted 31 October 2003  相似文献   
2.
The skin is a highly accessible organ and constitutes an active immunological site. Both these properties make this surface an attractive route for what promises to be a cost-effective, simple, practical and needle-free delivery of vaccines and immunomodulators. Less obvious is the fact that the state of the skin barrier can influence quantitative and qualitative aspects of antigen-specific immune responses. The everyday decision-making at the skin epithelium concerns the choice between the induction of an immune response and the establishment of a state of non-responsiveness (tolerance). This decision is influenced by various factors such as the dose, the route (intact vs barrier-disrupted skin), the cytokine microenvironment and the nature of the antigenic stimulus. By increasing our understanding of how immune responses are regulated in the epidermis we can envisage the development of immunisation protocols aimed at eliciting a protective immune response or inducing tolerance, with direct applications to preventive or therapeutic vaccination, respectively.Received 29 November 2004; received after revision 2 February 2005; accepted 22 February 2005  相似文献   
3.
Anti-DNA antibodies: aspects of structure and pathogenicity   总被引:4,自引:0,他引:4  
Anti-DNA antibodies contribute to the pathology of systemic lupus erythematosus. Their depositon in tissue lesions could result from localization of preformed immune complexes of antibodies with DNA or nucleosomes, or from cross-reaction of anti-DNA antibodies directly with tissue proteins. Structural analyses contribute to understanding their pathogenic potential. Primary structures of lupus immunoglobulin G double-stranded DNA-binding autoantibodies are determined by immunoglobulin genes with mutated variable region segments, indicative of selection by immunizing antigen. Arginine, lysine and asparagine residues in complementarity-determining region favor DNA binding. Heavy-chain variable regions make major contributions to DNA binding; affinity and specificity of binding are modulated or can be abrogated by the light-chain variable domain. Crytallographic structure is known for a few antibody-DNA complexes and several ligand-free Fab fragments. Computer modeling supplements this limited information. Structural information of lupus antibody interactions with both DNA and cross-reacting molecules will support use of ligands to inhibit tissue deposition of the antibodies and prevent lesion formation in lupus. Received 4 July 2002; accepted 23 July 2002 RID="*" ID="*"Corresponding author.  相似文献   
4.
5.
The influence of the proinflammatory cytokine interleukin (IL)-17 on inducible nitric oxide (NO) synthase (iNOS)-mediated NO release was investigated in the mouse insulinoma cell line MIN6 and mouse pancreatic islets. IL-17 markedly augmented iNOS mRNA/protein expression and subsequent NO production induced in MIN6 cells or pancreatic islets by different combinations of interferon-γ, tumor necrosis factor-α, and IL-1β. The induction of iNOS by IL-17 was preceded by phosphorylation of p38 mitogen-activated protein kinase (MAPK), and inhibition of p38 MAPK activation completely abolished IL-17-stimulated NO release. IL-17 enhanced the NO-dependent toxicity of proinflammatory cytokines toward MIN6 cells, while IL-17-specific neutralizing antibody partially reduced the NO production and rescued insulinoma cells and pancreatic islets from NO-dependent damage induced by activated T cells. Finally, a significant increase in blood IL-17 levels was observed in a multiple low-dose streptozotocin model of diabetes, suggesting that T cell-derived IL-17 might be involved in NO-dependent damage of beta cells in this disease. Received 14 June 2005; received after revision 17 September 2005; accepted 21 September 2005  相似文献   
6.
7.
Role of glutamic acid decarboxylase in the pathogenesis of type 1 diabetes   总被引:4,自引:0,他引:4  
Glutamic acid decarboxylase (GAD) is considered to be one of the strongest candidate autoantigens involved in triggering β-cell-specific autoimmunity. The majority of recent onset type 1 diabetes patients and prediabetic subjects have anti-GAD antibodies in their sera, as do nonobese diabetic (NOD) mice, one of the best animal models for human type 1 diabetes. Immunization of young NOD mice with GAD results in the prevention or delay of the disease as a result of tolerizing autoreactive T cells. Autoimmune diabetes can also be prevented by the suppression of GAD expression in antisense GAD trans genic mice backcrossed with NOD mice for seven generations. These results support the hypothesis that GAD plays an important role in the development of T-cell-mediated autoimmune diabetes. However, there is some controversy regarding the role of GAD in the pathogenesis of diabetes. Whether GAD truly plays a key role in the initiation of this disease remains to be determined. The examination of the development of insulitis and diabetes in β-cell-specific GAD knockout NOD mice will answer this remaining question. Received 12 April 2002; received after revision 24 May 2002; accepted 27 May 2002 RID="*" ID="*"Corresponding author.  相似文献   
8.
Summary Autoantibodies reacting with bromelain-treated autologous mouse red blood cells (Br-MRBC) are spontaneously produced by normal mice. In order to understand the biological significance of these autoantibodies, anti-Br-MRBC monoclonal autoantibodies have been prepared and studied for reactivity with a panel of frozen tissue sections from organs of normal mice by direct immunofluorescence. It has been found that the anti-Br-MRBC monoclonal autoantibodies are polyspecific, since they react with cells in multiple organs.16 October 1986  相似文献   
9.
Forkhead transcription factors in immunology   总被引:5,自引:0,他引:5  
  相似文献   
10.
Activation of cytotoxic T cells by solid tumours?   总被引:2,自引:0,他引:2  
Tumour-specific cytotoxic T cells (CTLs) are among the best-defined biological anticancer weapons. Nevertheless, they often fail to control tumour growth in vivo. Many reasons for this have been evoked tumours may actively inhibit CTLs, or may protect them selves from CTL recognition by various means. However, one does not necessarily need to postulate such active immune evasion mechanisms specifically acquired by tumour cells. In this review we argue that the failure of immune protection is due to the intrinsic inability of tumours to activate an effective immune response, and that many tumours are similar to normal issues in this respect. It is striking to see that the majority of the so-called immune escape mechanisms are not specifically acquired by selected tumour cells, but are common mechanisms shared between solid tumours and normal, healthy tissues. Immune responses are poor because tumour antigens do not efficiently localize to lymph follicles in lymphoid tissues, and are not efficiently presented to CTLs in an immunogenic context. The fact that tumours do not induce CTLs but are often susceptible to lymphocyte-mediated cytotoxicity indicates that more intensified immunization protocols should result in improved clinical outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号