首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
丛书文集   2篇
综合类   9篇
  2019年   2篇
  2012年   4篇
  2010年   1篇
  2009年   4篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
以高温固相法合成一系列Ce~(3+)-Nd~(3+)共掺Y_3Al_5O_(12)(YAG)发光材料.通过荧光光谱测试证明,在YAG基质中Ce~(3+)-Nd~(3+)之间发生宽谱高效近红外量子剪裁,能量传递机理为合作能量下转换.在460 nm波长激发下,Ce~(3+)离子吸收一个可见光子跃迁至5d_1能级,然后将自身能量传递给两个邻近的Nd~(3+),进而发射出两个近红外光子.对样品的荧光衰减曲线分析可知,Ce~(3+)-Nd~(3+)之间的量子效率高达177.8%.通过Ce~(3+)-Nd~(3+)之间的量子剪裁,可将太阳光谱中能量较高的紫外-可见波段转换为近红外波段,有利于太阳光谱更好地被晶硅太阳能电池吸收和利用.  相似文献   
2.
利用射频磁控溅射技术用N2和02作为溅射气体在石英沉底上制备了B-N共掺的P型ZnO薄膜.Hall测量结果表明,室温电阻率、载流子浓度、迁移率分别为2.3D.cm,1.2×10^17cm^-3,11cm^2/Vs.制备了ZnO基同质p-n结,研究了它们的I—V特性.探讨了B—N共掺的P型ZnO薄膜低温光致发光的微观机制.同时阐明了B—N共掺的P型ZnO薄膜的导电机制.  相似文献   
3.
采用溶胶-凝胶的方法,以硝酸银、钛酸四丁酯和尿素为主要实验原料,制备了膨润土负载N/Ag共掺杂半导体TiO2光催化剂.通过X射线衍射仪XRD、X射线光电子能谱XPS、扫描电镜SEM、透射电子显微镜TEM及能量弥散X射线谱图EDS对样品的晶相、掺杂成分进行测试和表征,并在可见光下进行亚甲基蓝溶液的降解实验.结果表明,氮元素以化学键形式存在TiO_2晶格中,Ag元素则以纳米粒子单分散状态存在,催化剂的比表面积达到49.3m~2/g,在用量为2.0g/L、光照时间为50min、400℃焙烧所得催化剂对15mg/L亚甲基蓝的降解效果最好,降解率可达到99.2%.  相似文献   
4.
采用微乳液快速共沉淀法制备出稀土La(Ⅲ)和Co(Ⅱ)复合掺杂非晶态氢氧化镍粉体,采用XRD、SAED和Raman光谱测试分析其结构形态和形貌,将样品合成镍电极材料并组装成MH-Ni电池,研究样品电极的不同掺杂比例对其电化学性能的影响及其相应的电化学效应作用。结果发现,样品材料的微结构无序性强,质子缺陷较多,呈现明显非晶材料结构特征 在80 mA.g-1恒电流充电5h,40 mA.g-1恒电流放电,终止电压为1.0 V的充放电制度下,复合掺杂4 wt.%La(Ⅲ)2 wt.%Co(Ⅱ)样品的放电平台为1.273 V,放电容量高达348.43mAh.g-1,电极材料在充放电循环30次,放电比容量衰减率仅为2.86%,循环可逆性较好。  相似文献   
5.
在石英玻璃衬底上以ZnO∶ In2O3粉末为靶材,采用射频磁控溅射法制备出具有良好c轴择优取向的ZnO∶ In薄膜,继而对样品进行二次N离子注入掺杂,成功实现N-In共掺p型ZnO薄膜.借助XRD、Hall测试、XPS和透射谱测试手段研究分析了共掺ZnO薄膜的晶体结构、电学和光学性质.结果表明制备的薄膜具有较高的结晶质量和较好的电学性能,其空穴浓度、迁移率和电阻率分别达到4.04×1018 cm-3、1.35 cm2V-1s-1和1.15 Ωcm.X光电子能谱(XPS)分析显示在p型ZnO薄膜里存在N-In键和N-Zn键,表明In掺杂可以促进N在ZnO薄膜的固溶,有利于N元素在ZnO薄膜内形成受主能级.另外,制备的ZnO薄膜在可见光范围内有很高的透射率,最高可达90%.其常温下的禁带宽度为3.2 eV,相对本征ZnO的禁带宽度略有减小.  相似文献   
6.
10Cr21Mn16NiN高锰氮奥氏体不锈钢组织与性能研究   总被引:1,自引:0,他引:1  
研究了固溶处理温度对热轧态10Cr21Mn16NiN高锰氮奥氏体不锈钢微观组织、力学性能和腐蚀性能的影响,并进一步揭示了该材料的低温韧脆转变行为。结果表明,随着固溶温度的升高,屈服强度和抗拉强度逐渐降低,而延伸率和耐腐蚀性能逐渐增大。这是因为高温固溶促进了热轧阶段形成的有害相重新溶解,从而消除析出相对性能带来的不利影响。10Cr21Mn16NiN钢在低温冲击载荷下表现出明显的韧脆转变行为,韧脆转变温度在-110℃附近,高于-110℃可以获得强度与韧性的良好配合。  相似文献   
7.
采用溶胶-凝胶法制备系列Fe3+/La3+共掺杂的纳米TiO2,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM),X-射线能谱仪(EDS),紫外-可见吸收光谱等技术对催化剂进行表征,并以甲基橙溶液为降解目标,测定其在紫外光下光催化活性.结果表明:Fe3+,La3+的掺杂能有效减小TiO2纳米粒子的平均晶粒尺寸,提高了TiO2纳米粉体的分散性;Fe3+/La3+共掺杂的纳米复合光催化剂的吸收强度明显增加,在紫外光下2h后,Fe3+/La3+共掺杂TiO2对甲基橙溶液的降解率达98%以上.  相似文献   
8.
采用基于密度泛函理论(DFT)平面波超软赝势方法并选择GGA+ PBE相关泛函理论,计算并对比了纯MgF2晶体、Fe掺杂MgF2晶体、N掺杂MgFz晶体和(Fe,N)不同位置双掺杂MgF2晶体的晶体结构、电子结构以及吸收光谱.研究了不同替位掺杂方式对MgF2光催化活性的影响,并在此基础上给出了掺杂后离子之间的协同作用机理.结果表明:Fe和N近邻双掺杂在可见光范围内的光吸收效率较非近邻更强,为(Fe,N)双掺杂调制的较佳方式.  相似文献   
9.
用射频磁控溅射法在石英玻璃衬底上制备了较高结晶质量的ZnO: Mn薄膜,继而进行N离子注入和退火处理,成功实现了ZnO薄膜的Mn-N两步法共掺杂和p型转变.利用X射线衍射(XRD)、Hall测试、分光光度计、X射线光电子能谱(XPS)等测试手段对其性能进行了分析.结果表明:所测样品均具有单一的c轴择优取向,薄膜在退火后没有检测到其它杂质相的生成;薄膜在650 ℃经10~30 min退火时均可实现p型转变,空穴浓度可达1016~1017cm-3,表明650℃可能为ZnO: Mn-N体系中N离子达到电激活成为有效受主的温度;XPS能谱证明了Mn2+、N3-离子的掺入;在热退火作用下,部分间隙位N离子达到电激活通过扩散进入O空位,形成N-Zn或N-Mn键,是样品转变为p型的依据; p型ZnO: Mn-N薄膜室温下的禁带宽度为3.16 eV,相对未掺杂ZnO的禁带宽度3.29 eV明显减小.  相似文献   
10.
利用金属有机源化学气相沉积(MOCVD)技术,在蓝宝石上外延了Mn-N共掺ZnO薄膜,同时,将得到的ZnMnO:N样品分别在700,900和1100°C的温度下进行真空退火处理.X射线衍射(XRD)显示真空退火使薄膜样品的晶格质量变差,但样品都具有良好的单轴取向.ZnMnO:N样品的拉曼光谱(Raman)和光致发光谱(PL)光学表征显示真空退火使得样品中氧空位(VO)增多.对NT,Mn共掺ZnO晶体的第一性原理模拟计算揭示了N,Mn共掺ZnO的态密度存在较强的p-d相互作用,产生磁矩.一旦引入氧空位(VO)后,费米能级上移,p-d相互作用消失,磁矩减小甚至消失.实验表征分析与模拟计算结果一致:对于N,Mn共掺ZnO薄膜样品,引入氧空位(VO)后,铁磁性减弱.因此,Mn3d电子与N2p局域束缚的电子形成的磁性束缚激子(BMP)决定了磁性相互作用的产生.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号