首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2010年   2篇
  2009年   3篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The magnetic properties of magnetosome magnetite are of interdisciplinary interest because magnetosomes are potential carriers of natural remanent magnetization and paleoenvironment, as well as novel nano-biomaterials in biotechnological and biomedical applications. We carried out magnetic and electron transmission microscopy analyses of fresh Magnetospirillum magneticum AMB-1 whole cells and isolated magnetosomes. Results revealed that AMB-1 synthesized single-domain magnetite magneto-somes, which are arra...  相似文献   
2.
A magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which had h...  相似文献   
3.
为了更清楚的了解趋磁螺菌产磁小体的合成机理和调节途径,用Tn5转座子诱变的方法筛选得到了2株磁小体合成降低的突变株,并克隆了突变株中被插入失活的基因,分别为编码ABC型Fe3+转移系统中的离子结合蛋白的amb3385基因和功能未知的amb3672基因.互补实验表明携带amb3385和amb3672基因的广宿主载体可以不同程度地恢复突变株中磁小体的合成,证明了D.Schüler关于磁小体合成假说的第一个步骤,即Fe3+从胞外向经由Fe3+转运蛋白运输至了胞内.由于amb3672基因比对时未发现特殊相似基因,其功能尚需进一步研究.  相似文献   
4.
A magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which had homology with the protein encoded by ORF1, were the cation transporter. Transmembrane domain analysis showed that the protein encoded by ORF1 contained four transmembrane domains. It may be a transmembrane protein. The protein encoded by ORF1 contained two putative conserved domains: COG0053 and PRK09509. The MMT1 and FieF, containing conserved domains COG0053 and PRK09509 too, were Fe2+ transporter (cation diffusion facilitator superfamily). It was suggested that the protein encoded by ORF1 might take part in the magnetosomes biosynthesis as Fe2+ transporter. Supported by National Natural Science Foundation of China (Grant No. 30570023) and Scientific Research Project of Huaibei City, Anhui Province (Grant No. 070114)  相似文献   
5.
A submerged culture technique for Magnetospirillum gryphiswaldense under the nitrogen-fixing condition (microaerobic and N-limited) was set up. In N-limited medium with Na-lactate as a sole carbon source, the optical density (A600 nm) and activity of nitrogen fixation of cells were 1.3 and 217 nmol of ethylene produced per hour per A600nm respectively within 21 h by three times of feeds. The pH and temperature were controlled at 7.2 and 30℃ respectively, and the oxygen concentration was controlled by sparging with N2 containing 0.4%-0.8% of O2. The activity of nitrogen fixation of cells was obviously inhibited by oxygen and ammonium. It indicated that the posttranslational regulation of nitrogenase existed in M. gryphiswaldense.  相似文献   
6.
This study addressed the effect of hydrogen metabolism on cell growth and magnetosome synthesis in Magnetospirillum gryphiswaldense strain MSR-1. Two deletion mutants were generated: L206, with single deletion of the hupL gene encoding H2-uptake [NiFe] hydrogenase; and B206, with double deletion of the hyaB gene encoding H2-producing [NiFe] hydrogenase and the hupL gene. The wild-type and mutant strains were compared in terms of hydrogen uptake capability, hydrogen yield, growth rate, and iron uptake, and o...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号