首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
现状及发展   2篇
  2007年   1篇
  1987年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Summary 11-cis retinaldehyde binding analysis was performed on a bovine retinal pigment epithelium preparation of cellular retinaldehyde binding protein (CRALBP), whose purity degree was estimated as 75%. Equilibrium binding studies were carried out measuring the replacement of tritium-labeled with unlabeled 11-cis retinaldehyde at 25°C. Analysis of the experimental data both by a direct curve-fitting procedure utilizing a non linear least square regression analysis and by a conventional Scatchard plot revealed a single non-interacting binding site with an apparent equilibrium constant of 0.9×10–7 M.A binding stoichiometry of approximately 1 mol of 11-cis retinaldehyde/mol of binding protein can be calculated from the experimental data. Competition studies carried out in the presence of unlabeled trans and cis isomers of Vitamin A derivatives confirm the high degree of specificity of the 11-cis retinaldehyde binding.  相似文献   
2.
The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined Km values ranged from 0.05 to 0.3 μM and kcat values from 2.3 to 17.6 min−1, while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The Km values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations. Received 12 October 2006; received after revision 6 December 2006; accepted 8 January 2007  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号