首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
现状及发展   3篇
综合类   2篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
利用PCR方法分离筛选了拟南芥网格蛋白重链T-DNA插入突变体chc1和chc2,并观察了CHC功能缺失后对植株发育的影响.结果表明:拟南芥网格蛋白重链CHC1或CHC2功能缺失引起部分植株发育异常,表现出生长素相关的发育表型,如幼苗子叶出现棒状、喇叭状和扇形等各种异常表型;通过人工杂交未能获得chc1chc2纯合双突变体,表明CHC1和CHC2功能同时缺失可能引起花粉致死或胚胎致死.这些遗传分析结果表明CHC在植物发育过程中具有重要的生物学功能.  相似文献   
2.
主要阐述了网格蛋白、接头蛋白AP2复合体的组成及其功能、动物网格蛋白介导内吞的分子机制和植物网格蛋白介导内吞的一些最新进展;阐述了植物网格蛋白介导的内吞在生长素极性运输、胚胎发育及逆境响应等中的作用,总结了植物网格蛋白介导内吞的生物学意义及展望.  相似文献   
3.
The formyl peptide-like receptor FPRL1 is a member of the chemoattractant subfamily of G protein- coupled receptors involved in regulating leukocyte migration in inflammation. To elucidate mechanisms underlying the internalization of ligand-bound FPRL1 and possible receptor recycling, we characterized the endocytic itinerary of FPRL1. We show that agonist-triggered internalization from the plasma membrane into intracellular compartments is prevented by perturbation of clathrin-mediated endocytosis, such as expression of the dominant-negative clathrin Hub mutant, siRNA-mediated depletion of cellular clathrin and expression of a dominant-negative mutant of the large GTPase dynamin. Internalized FPRL1 co-localized with endocytosed transferrin and the small GTPases Rab4 and Rab11 in vesicular structures most resembling recycling endosomes. Recycling of FPRL1 was significantly reduced by pretreatment with PI3-kinase inhibitors. Thus, ligand-bound FPRL1 undergoes primarily clathrin-mediated and dynamin-dependent endocytosis and the receptor recycles via a rapid PI3-kinase-sensitive route as well as pathways involving perinuclear recycling endosomes.Received 19 March 2004; received after revision 26 April 2004; accepted 12 May 2004  相似文献   
4.
The cellular functions of clathrin   总被引:3,自引:0,他引:3  
Membranes and proteins are moved around the cell in small vesicles. A protein coat aids the budding of such vesicles from donor membranes. The major type of coat used by the cell is composed of clathrin, a three-legged protein that can form lattice-like coats on membranes destined for trafficking. In this review, I outline what we know about clathrin and discuss some recent advances in understanding the basic biology of this fascinating molecule, which include building a molecular model of a clathrin lattice and discovery of a new function for clathrin that occurs during mitosis. Received 12 December 2005; received after revision 21 March 2006; accepted 29 March 2006  相似文献   
5.
Vesicular transport is the basic communication mechanism between different compartments in a cell and with the environment. In this review I discuss the principles of vesicle generation and consumption with particular emphasis on the different types of coat proteins and the timing of the shedding of the coat proteins from transport containers. In recent years it has become clear that there are more coat complexes than the classical COPI, COPII and clathrin coats. These additional coats may generate vesicles that transport cargo in a temporally and/or spatially controlled manner. Work over the last years suggests that GTP hydrolysis occurs early during vesicle biogenesis, destabilizing the coat perhaps before fission of the vesicle from the donor membrane occurs. Recent findings imply, however, that tethers at the receiving compartment specifically detect the coat on vesicle. (Part of a Multi-author Review)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号