首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
现状及发展   1篇
综合类   3篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The assembly of the protein synthesis machinery occurs during translation initiation. In bacteria, this process involves the binding of messenger RNA(mRNA) start site and fMet-tRNAfMet to the ribosome, which results in the formation of the first codon-anticodon interaction and sets the reading frame for the decoding of the mRNA. This interaction takes place in the peptidyl site of the 30S ribosomal subunit and is controlled by the initiation factors IF1, IF2 and IF3 to form the 30S initiation complex. The binding of the 50S subunit and the ejection of the IFs mark the irreversible transition to the elongation phase. Visualization of these ligands on the ribosome has been achieved by cryo-electron microscopy and X-ray crystallography studies, which has helped to understand the mechanism of translation initiation at the molecular level. Conformational changes associated with different functional states provide a dynamic view of the initiation process and of its regulation. Received 16 July 2008; received after revision 31 August 2008; accepted 10 September 2008 A. Simonetti, S. Marzid: These authors contributed equally to this work.  相似文献   
2.
Yusupova G  Jenner L  Rees B  Moras D  Yusupov M 《Nature》2006,444(7117):391-394
Translation initiation is a major determinant of the overall expression level of a gene. The translation of functionally active protein requires the messenger RNA to be positioned on the ribosome such that the start/initiation codon will be read first and in the correct frame. Little is known about the molecular basis for the interaction of mRNA with the ribosome at different states of translation. Recent crystal structures of the ribosomal subunits, the empty 70S ribosome and the 70S ribosome containing functional ligands have provided information about the general organization of the ribosome and its functional centres. Here we compare the X-ray structures of eight ribosome complexes modelling the translation initiation, post-initiation and elongation states. In the initiation and post-initiation complexes, the presence of the Shine-Dalgarno (SD) duplex causes strong anchoring of the 5'-end of mRNA onto the platform of the 30S subunit, with numerous interactions between mRNA and the ribosome. Conversely, the 5' end of the 'elongator' mRNA lacking SD interactions is flexible, suggesting a different exit path for mRNA during elongation. After the initiation of translation, but while an SD interaction is still present, mRNA moves in the 3'-->5' direction with simultaneous clockwise rotation and lengthening of the SD duplex, bringing it into contact with ribosomal protein S2.  相似文献   
3.
Demeshkina N  Jenner L  Westhof E  Yusupov M  Yusupova G 《Nature》2012,484(7393):256-259
During protein synthesis, the ribosome accurately selects transfer RNAs (tRNAs) in accordance with the messenger RNA (mRNA) triplet in the decoding centre. tRNA selection is initiated by elongation factor Tu, which delivers tRNA to the aminoacyl tRNA-binding site (A site) and hydrolyses GTP upon establishing codon-anticodon interactions in the decoding centre. At the following proofreading step the ribosome re-examines the tRNA and rejects it if it does not match the A codon. It was suggested that universally conserved G530, A1492 and A1493 of 16S ribosomal RNA, critical for tRNA binding in the A site, actively monitor cognate tRNA, and that recognition of the correct codon-anticodon duplex induces an overall ribosome conformational change (domain closure). Here we propose an integrated mechanism for decoding based on six X-ray structures of the 70S ribosome determined at 3.1-3.4?? resolution, modelling cognate or near-cognate states of the decoding centre at the proofreading step. We show that the 30S subunit undergoes an identical domain closure upon binding of either cognate or near-cognate tRNA. This conformational change of the 30S subunit forms a decoding centre that constrains the mRNA in such a way that the first two nucleotides of the A codon are limited to form Watson-Crick base pairs. When U·G and G·U mismatches, generally considered to form wobble base pairs, are at the first or second codon-anticodon position, the decoding centre forces this pair to adopt the geometry close to that of a canonical C·G pair. This by itself, or with distortions in the codon-anticodon mini-helix and the anticodon loop, causes the near-cognate tRNA to dissociate from the ribosome.  相似文献   
4.
两种杂多酸对过氧化氢分解反应催化作用的比较研究   总被引:1,自引:0,他引:1  
以H2O2分解反应为例,用量气法系统地研究了十二钨磷酸盐和作者新合成的含有隧道结构的二维钠钼磷多酸盐的催化性能,并将两种杂多酸对该反应的催化作用进行比较,进一步研究了反应温度、催化剂的用量等主要因素对H2O2分解反应的影响,得出两种杂多酸盐催化H2O2的最适宜条件及有关数据,从而总结出一些有益于杂多酸盐催化作用的研究与实验教学的结论.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号