首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   0篇
  国内免费   2篇
系统科学   2篇
教育与普及   1篇
理论与方法论   9篇
现状及发展   126篇
研究方法   46篇
综合类   126篇
自然研究   16篇
  2020年   2篇
  2017年   4篇
  2016年   9篇
  2015年   7篇
  2014年   4篇
  2013年   3篇
  2012年   18篇
  2011年   30篇
  2010年   12篇
  2009年   2篇
  2008年   12篇
  2007年   16篇
  2006年   10篇
  2005年   17篇
  2004年   7篇
  2003年   16篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1992年   8篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1980年   3篇
  1979年   10篇
  1978年   5篇
  1976年   4篇
  1975年   6篇
  1974年   7篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
  1970年   10篇
  1969年   2篇
  1968年   7篇
  1967年   5篇
  1966年   4篇
  1965年   2篇
  1963年   2篇
  1960年   1篇
  1957年   3篇
  1948年   1篇
  1947年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
1.
Summary All sensory endings of the trigeminal nerve in the dura mater of the rat are formed by a small swelling, from which continues themetaterminal apparatus, fine filaments at the limit of visibility. Periodically the fine granules at the extremity of the filaments swell, whereas the fibrils themselves disappear, leaving a small, round, argentophil mass. Later the filaments reappear, then redeposit their debris, which persists for a time.Thus the metaterminal apparatus manifests cyclic variations, which recall the transitory existence of collaterals observed duringin vivo orin vitro development of nerve fibres.  相似文献   
2.
The study of metabolic fuel provision and its regulation has reached an exciting stage where specific molecular events can be correlated with parameters of the organism's ecology. This paper examines substrate supply pathways from storage sites to locomotory muscle mitochondria and discusses ecological implications of the limits for maximal flux through these pathways. The relative importance of the different oxidative fuels is shown to depend on aerobic capacity. Very aerobic, endurance-adapted animals such as long distance migrants favor the use of lipids and intramuscular fuels over carbohydrates and circulatory fuels. The hypothesis of functional co-adaptation between oxygen and metabolic fuel supply systems allows us to predict that the capacity of several biochemical processes should be scaled with maximal oxygen consumption. Key enzymes, transmembrane transporter proteins, glucose precursor supply and soluble fatty acid transport proteins must all be geared to support higher maximal glucose and fatty acid fluxes in aerobic than in sedentary species.  相似文献   
3.
MSI and MSII made on ribosome in idling step of protein synthesis   总被引:56,自引:0,他引:56  
W A Haseltine  R Block  W Gilbert  K Weber 《Nature》1972,238(5364):381-384
  相似文献   
4.
5.
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.  相似文献   
6.
Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.  相似文献   
7.
PTC124 targets genetic disorders caused by nonsense mutations   总被引:1,自引:0,他引:1  
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.  相似文献   
8.
9.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140?mm?Hg systolic blood pressure or ≥90?mm?Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.  相似文献   
10.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号