首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   3篇
系统科学   5篇
现状及发展   63篇
研究方法   48篇
综合类   111篇
自然研究   7篇
  2020年   2篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2014年   3篇
  2013年   3篇
  2012年   18篇
  2011年   27篇
  2010年   6篇
  2008年   21篇
  2007年   17篇
  2006年   17篇
  2005年   19篇
  2004年   14篇
  2003年   14篇
  2002年   23篇
  2000年   3篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
  1961年   2篇
  1960年   1篇
  1959年   3篇
  1958年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
1.
Sahakian B  Morein-Zamir S 《Nature》2007,450(7173):1157-1159
  相似文献   
2.
Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.  相似文献   
3.
Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200-500 microM) compared with other mammals (3-120 microM). About 70% of daily urate disposal occurs via the kidneys, and in 5-25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7-5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.  相似文献   
4.
To investigate whether mammalian cells can carry out recombinational double-strand break (DSB) repair between highly diverged sequences, mouse fibroblasts were transfected with DNA substrates that contained a “recipient” thymidine kinase (tk) gene disrupted by the recognition site for endonuclease I-SceI. Substrates also contained a linked “donor” tk gene sequence. Following DSB induction by I-SceI, selection for tk-expressing clones allowed recovery of repair events occurring by nonhomologous end-joining or recombination with the donor sequence. Although recombinational repair was most efficient when donor and recipient shared near-perfect homology, we recovered recombination events between recipient and donor sequences displaying 20 % nucleotide mismatch. Recombination between such imperfectly matched (“homeologous”) sequences occurred at a frequency of 1.7 × 10?7 events per cell and constituted 3 % of the DSB repair events recovered with the pair of homeologous sequences. Additional experiments were done with a substrate containing a donor sequence comprised of a region sharing high homology with the recipient and an adjacent region homeologous to the recipient. Recombinational DSB repair tracts initiating within high homology propagated into homeology in 11 of 112 repair events. These collective results contrasted with our earlier work in which spontaneous recombination (not intentionally induced by a DSB) between homeologous sequences occurred at an undetectable frequency of less than 10?9 events per cell, and in which events initiating within high homology propagated into adjoining homeology in one of 81 events examined. Our current work suggests that homology requirements for recombination are effectively relaxed in proximity to a DSB in a mammalian genome.  相似文献   
5.
6.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10(-9)). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10(-6)). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10(-10)) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.  相似文献   
7.
To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in H3F3A, encoding histone H3.3, or in the related HIST1H3B, encoding histone H3.1, that caused a p.Lys27Met amino acid substitution in each protein. An additional 14% of non-BS-PGs had somatic mutations in H3F3A causing a p.Gly34Arg alteration.  相似文献   
8.
Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.  相似文献   
9.
Although the expression of the non-classical HLA class I molecule HLA-G was first reported to be restricted to the fetal–maternal interface on the extravillous cytotrophoblasts, the distribution of HLA-G in normal tissues appears broader than originally described. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. More interestingly, under pathophysiological conditions HLA-G antigens may be expressed on various types of malignant cells suggesting that HLA-G antigen expression is one strategy used by tumor cells to escape immune surveillance. In this article, we will focus on HLA-G expression in cancers of distinct histology and its association with the clinical course of diseases, on the underlying molecular mechanisms of impaired HLA-G expression, on the immune tolerant function of HLA-G in tumors, and on the use of membrane-bound and soluble HLA-G as a diagnostic or prognostic biomarker to identify tumors and to monitor disease stage, as well as on the use of HLA-G as a novel therapeutic target in cancer.  相似文献   
10.
Lewisia kelloggii has been understood as a rare plant with a disjunct range in California and Idaho. Examination of herbarium specimens and analysis of isozymes in 6 Idaho and 7 California populations revealed consistent differences between plants of the 2 states. Fixed differences in alleles at 2 loci (AAT2 and PGI1) distinguished Idaho from California plants. Genetic identities based on isozymes between Idaho and California populations averaged 0.58, lower than the average for congeneric plant species. Idaho plants were smaller than most California plants, but California plants were variable. The most consistent morphological difference between Idaho and California specimens was the difference in the number of glands on the margins of bracts and sepals. Idaho plants had 0 (-5) pink glands on each margin of these organs, all on teeth near the tips. In California plants these organs had 12-25 glands on each margin, the distal ones elevated on teeth and the proximal ones sessile. We recognize the Idaho plants as a new species, L. sacajaweana , and retain the name L. kelloggii for the California populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号