首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
理论与方法论   1篇
现状及发展   3篇
研究方法   10篇
综合类   30篇
自然研究   3篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   5篇
  2009年   1篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  1992年   1篇
  1990年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
E H Joe  K Angelides 《Nature》1992,356(6367):333-335
In myelinated nerves, segregation of voltage-dependent sodium channels to nodes of Ranvier is crucial for saltatory conduction along axons. As sodium channels associate and colocalize with ankyrin at nodes of Ranvier, one possibility is that sodium channels are recruited and immobilized at axonal sites which are specified by the subaxolemmal cytoskeleton, independent of glial cell contact. Alternatively, segregation of channels at distinct sites along the axon may depend on glial cell contact. To resolve this question, we have examined the distribution of sodium channels, ankyrin and spectrin in myelination-competent cocultures of sensory neurons and Schwann cells by immunofluorescence, using sodium channel-, ankyrin- and spectrin-specific antibodies. In the absence of Schwann cells, sodium channels, ankyrin and spectrin are homogeneously distributed on sensory axons. When Schwann cells are introduced into these cultures, the distribution of sodium channels dramatically changes so that channel clusters on axons are abundant, but ankyrin and spectrin remain homogeneously distributed. Addition of latex beads or Schwann cell membranes does not induce channel clustering. Our results suggest that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to organize and maintain channel distribution during differentiation of myelinated axons.  相似文献   
2.
3.
1 Results Bimetallic particles in the nanometer size range are of substantial interest due to their vast applications in catalysis[1].The synthesis of bimetallic nanoparticles with definite size with a well-control over their nanostructure remains a challenging problem.Thus there exists a great demand for both synthesis and atomic level characterization of nanostructure of bimetallic nanoparticles (NPs).With the recent advent of high-intensity tunable sources of X-rays,now available at synchrotron radia...  相似文献   
4.
5.
Hu K  Carroll J  Fedorovich S  Rickman C  Sukhodub A  Davletov B 《Nature》2002,415(6872):646-650
Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.  相似文献   
6.
The aggressive clinical behavior of melanoma suggests that the developmental origins of melanocytes in the neural crest might be relevant to their metastatic propensity. Here we show that primary human melanocytes, transformed using a specific set of introduced genes, form melanomas that frequently metastasize to multiple secondary sites, whereas human fibroblasts and epithelial cells transformed using an identical set of genes generate primary tumors that rarely do so. Notably, these melanomas have a metastasis spectrum similar to that observed in humans with melanoma. These observations indicate that part of the metastatic proclivity of melanoma is attributable to lineage-specific factors expressed in melanocytes and not in other cell types analyzed. Analysis of microarray data from human nevi shows that the expression pattern of Slug, a master regulator of neural crest cell specification and migration, correlates with those of other genes that are important for neural crest cell migrations during development. Moreover, Slug is required for the metastasis of the transformed melanoma cells. These findings indicate that melanocyte-specific factors present before neoplastic transformation can have a pivotal role in governing melanoma progression.  相似文献   
7.
8.
Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.  相似文献   
9.
10.
Transition through telomere crisis is thought to be a crucial event in the development of most breast carcinomas. Our goal in this study was to determine where this occurs in the context of histologically defined breast cancer progression. To this end, we assessed genome instability (using fluorescence in situ hybridization) and other features associated with telomere crisis in normal ductal epithelium, usual ductal hyperplasia, ductal carcinoma in situ and invasive cancer. We modeled this process in vitro by measuring these same features in human mammary epithelial cell cultures during ZNF217-mediated transition through telomere crisis and immortalization. Taken together, the data suggest that transition through telomere crisis and immortalization in breast cancer occurs during progression from usual ductal hyperplasia to ductal carcinoma in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号