首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   2篇
综合类   1篇
  2016年   1篇
  2013年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Cell growth and proliferation require coordinated ribosomal biogenesis and translation. Eukaryotic initiation factors (eIFs) control translation at the rate-limiting step of initiation. So far, only two eIFs connect extracellular stimuli to global translation rates: eIF4E acts in the eIF4F complex and regulates binding of capped messenger RNA to 40S subunits, downstream of growth factors, and eIF2 controls loading of the ternary complex on the 40S subunit and is inhibited on stress stimuli. No eIFs have been found to link extracellular stimuli to the activity of the large 60S ribosomal subunit. eIF6 binds 60S ribosomes precluding ribosome joining in vitro. However, studies in yeasts showed that eIF6 is required for ribosome biogenesis rather than translation. Here we show that mammalian eIF6 is required for efficient initiation of translation, in vivo. eIF6 null embryos are lethal at preimplantation. Heterozygous mice have 50% reduction of eIF6 levels in all tissues, and show reduced mass of hepatic and adipose tissues due to a lower number of cells and to impaired G1/S cell cycle progression. eIF6(+/-) cells retain sufficient nucleolar eIF6 and normal ribosome biogenesis. The liver of eIF6(+/-) mice displays an increase of 80S in polysomal profiles, indicating a defect in initiation of translation. Consistently, isolated hepatocytes have impaired insulin-stimulated translation. Heterozygous mouse embryonic fibroblasts recapitulate the organism phenotype and have normal ribosome biogenesis, reduced insulin-stimulated translation, and delayed G1/S phase progression. Furthermore, eIF6(+/-) cells are resistant to oncogene-induced transformation. Thus, eIF6 is the first eIF associated with the large 60S subunit that regulates translation in response to extracellular signals.  相似文献   
2.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that forms sessile communities, named biofilms. The non-motile forms are very difficult to eradicate and are often associated with the establishment of persistent infections, especially in patients with cystic fibrosis. The resistance of P. aeruginosa to conventional antibiotics has become a growing health concern worldwide and has prompted the search for new anti-infective agents with new modes of action. Naturally occurring antimicrobial peptides (AMPs) represent promising future template candidates. Here we report on the potent activity and membrane-perturbing effects of the amphibian AMP esculentin(1-21), on both the free-living and sessile forms of P. aeruginosa, as a possible mechanism for biofilm disruption. Furthermore, the findings that esculentin(1-21) is able to prolong survival of animals in models of sepsis and pulmonary infection indicate that this peptide can be a promising template for the generation of new antibiotic formulations to advance care of infections caused by P. aeruginosa.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号