首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   7篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Wang  LiBo  Yang  ZuoSheng  ZHang  RongPing  Fan  DeJiang  Zhao  MeiXun  Hu  BangQi 《科学通报(英文版)》2011,56(15):1588-1595
Sea surface temperature (SST) records in the South Yellow Sea during the last 6200 years are reconstructed by the unsaturation index of long-chain alkenones (K 37 U ’) in sediment core ZY2 from the central mud area.The SST records varied between 14.1 and 16.5°C (15.6°C on average),with 3 phases:(1) A high SST phase at 6.2-5.9 cal ka BP;(2) A low and intensely fluctuating SST phase at 5.9-2.3 cal ka BP;and (3) A high and stable SST phase since 2.3 cal ka BP.Variation of the SST records is similar to intensity of the Kuroshio Current (KC),and corresponds well in time to global cold climate events.However,the amplitude of the SST response to cooling events was significantly different in different phases.The SST response to global cooling event was weak while the KC was strong;and the SST response was strong while the KC was weak.The difference in amplitude of the SST response is possibly caused by the modulation effect of the Yellow Sea Warm Current which acts as a shelf branch of the KC and a compensating current induced by the East Asia winter monsoon.The warm waters brought by the Yellow Sea Warm Current cushion the SST decrease induced by climate cooling,and both the Kuroshio and East Asian winter monsoon play important roles in the modulation mechanism.The SST records display a periodicity of 1482 years.The same period was found in the KC records,indicating that variation of the SST records in the central South Yellow Sea is strongly affected by KC intensity.The same period was also found in Greenland ice cores and North Atlantic and Arabian Sea sediment cores,showing a regional response of marine environmental variability in the East China Seas to that in the global oceans.  相似文献   
2.
This paper reports high-resolution biomarker records of the last 260 ka for core MD05-2904 from the northern South China Sea (SCS). The sea surface temperature (SST) record using the U37^k', index reveals a minimum of 21.5℃(MIS 2) and a maximum of 28.3℃(MIS 5.5), for a temperature difference of almost 7℃, and provides the longest high-resolution U37^k' SST record in northern SCS. The content of odd-number long chain n-alkanes and several n-alkanes indexes such as the CPI, ACL and the C31/C27 ratio, all reveal generally higher values during the glacials and lower values during the interglaclals. Terrestrial input as Indicated by n-alkane content was mostly controlled by sea-level changes: During the glacials, lower sea-level exposed the continental shelf to enable rivers to transport more terrestrial materials to the slope; and the situation reverses during the interglacials. The n-alkane indexes changes reveal more n-alkanes from contemporary vegetation during glacials as a result of the proximity of the core site to the source region, while the increases in ACL and C81/C27 ratio during glaclals indicate a change to more grassy vegetation. However, the highest values for CPI, ACL and the C81/C27 ratio all occurred during late MIS 3, and it was suggested that this period was characterized by a strong summer monsoon-dominated humid climate which resulted in a denser vegetation for the exposed continental shelf region.  相似文献   
3.
Sea surface temperature over the past 450 ka was obtained by the unsaturation of molecular fossil-long chain alkenone with a resolution of about 1 ka from the western South China Sea. This is the longest temperature profile in the South China Sea at such high resolution. The U37^κ-SST results revealed similar glacial-interglacial cycles as the δ^18O profile of planktonic foraminifera, with SST variability of 23-25.5℃ for glacial and 25-28℃ for interglacial periods. The highest SST (28.4℃) was recorded at MIS5.5 and lowest SST (22.6℃) during MIS2. The SST record preceded the planktonic foraminiferal δ^18O on five glacial-interglacial transitions. Comparison of temperature records from the Southern and Northern Hemispheres indicated a more Southern Hemisphere-like pattern for the temperature variation in the SCS. Strong precession and semiprecession signals in the spectra of our SST record manifest the tropical phenomena.  相似文献   
4.
Zhou  Bin  Shen  ChengDe  Zheng  HongBo  Zhao  MeiXun  Sun  YanMin 《科学通报(英文版)》2009,54(12):2082-2089
There are many controversial issues in loess studies such as natural vegetation types on the Chinese Loess Plateau during the historical periods and the spatial and temporal evolution of C3/C4 plants. Elemental carbon isotopic composition (δ^13Cec) in the loess section may offer new evidence for these problems. Elemental carbon (EC) is produced by incomplete combustion of vegetation, and its carbon isotopic composition has a very small difference from that of the formal vegetation, then δ^13Cec can be used as a record to recover the changes of vegetation. Elemental carbon was extracted by applying the oxidation method from the Ioess-paleosol sequence in the central Chinese Loess Plateau, and its car- bon isotope composition was analyzed by the isotope mass spectrometer. The results showed that the vegetation in this region was a mixed type of C3 and C4 plants, dominated with C3 plants in most of the time. Since late Quaternary, C3/C4 plants may not follow a simple glacial-interglacial cycle mode on the Chinese Loess Plateau, but showing fluctuations. C3 plants increased gradually in L4 period, and more C3 plants occurred during $3 period, and C4 plants increased again during L3-- L2 periods, after that, Cs plants dominated again during S1 --S0 periods. During periods of paleosol development, C3 plants were abundant in S3 and S1, and there were more Ca plants in S2 and SO. During periods of loess sedimen- tation, there were more C3 plants in L4 and L1, and there were more C4 plants in L3 and L2. On the orbital timescale, the vegetation variations revealed by δ^13Cec record are consistent with the results of pollen data and also similar to the results obtained by organic carbon isotopic composition since the last glacial period.  相似文献   
5.
Li  DongLing  Jiang  Hui  Li  TieGang  Zhao  MeiXun 《科学通报(英文版)》2011,56(11):1131-1138
We analyzed sediment diatoms from core MD05-2908 to infer climate and paleoenvironmental changes in the southern Okinawa Trough (SOT) over the past 1000 years.Because the study area is located in the East Asia monsoon area and beneath the main axis of Kuroshio Current,the climatic and hydrographical conditions are strongly influenced by both of these factors.The species used as environmental indicators,including the Kuroshio Current species (KC species) and freshwater species,were investigated in this paper.Changes in the abundance of the two groups of species revealed significant variations in water temperature and hydrography in the SOT during the Medieval Warm Period (MWP) and the Little Ice Age (LIA).From 950-1500 AD,the abundance of the KC species increased fluctuantly,while the freshwater species decreased,showing that the influence of the Kuroshio Current was intensified at that interval and the precipitation of the study area was relatively low.The KC species decreased remarkably and was maintained at a low abundance during the interval of 1500-1900 AD,which suggests that the impact of the Kuroshio Current on the SOT weakened during the period corresponding to the LIA.Moreover,the high abundance of the freshwater species at the same interval indicates a distinct increase in precipitation in northeastern Taiwan,which may be correlated to the south-detention of the rainfall belt in China caused by the southward migration of the western Pacific subtropical high.  相似文献   
6.
Biomarkers have been widely used to reconstruct phytoplankton productivity and community structure changes, and this method has been applied for the first time in the middle Okinawa Trough during the transition from the last deglaciation to the Holocene. The total content of all marine phytoplankton biomarkers, used as a total productivity indicator, reveals higher productivity during the deglaciation. The ratios of the biomarkers are used as community structure indicators which show that, compared with the Holocene, the contribution from haptophytes decreased while the contributions from diatoms and dinoflagellates increased during the deglaciation. The increased productivity during the deglaciation was likely caused by the stronger winter monsoon. Also increased nutrient supply from terrestrial sources contributes to the higher productivity due to lower sea-level, which is consistent with higher terrestrial biomarker (long-chain n-alkanols) content. These changes in the nutrient supply also con- tributed to the community structure changes in the Okinawa Trough.  相似文献   
7.
Southern Hemisphere mid-latitude westerlies contribute to the ventilation of the deep Southern Ocean (SO), and drive changes in atmospheric carbon dioxide (CO2) and the global climate. As the westerlies control directly oceanic fronts, the movement of the subtropical front (STF) reflects the westerlies migration. Thus it is important to understand the relationships between STF movement and the weaterlies, ventilation of the deep SO, ice volume and atmospheric CO2. To this end, we use two new high-resolution records from early Marine Isotope Stage (MIS) 20 (~800 ka) of sea surface temperature (SST) based on Uk’ 37 paleo-thermometer and benthic oxygen isotope (δ18OB) at Ocean Drilling Program (ODP) Site 1170B in the southern Tasman Sea (STS), to construct linkages between the marine records and atmospheric proxies from Antarctic ice-cores. During the last 800 ka, the average SST (10.2°C) at Site 1170B is 1.8°C lower than today (annual average 12°C). The highest average SST of 11.6°C occurred during MIS 1, and the lowest average SST of 7.8°C occurred during MIS 2. The warmest and coldest records of 14.7°C and 6.2°C occurred in the MIS 5 and MIS 2, respectively. In the glacial-interglacial cycles of the last 800 ka, variability of reconstructed SST shows that the STF moved northward or southward more than 3° of latitude compared with its present location. In the warmest stage MIS 5, the STF shifted to its southernmost location of ~49°S. In contrast, in the coldest stage MIS 2, the STF moved to its northernmost location of ~43°S. In response to orbital cycles, the westerlies movement led ice volume and atmospheric CO2 changes, but it was in phase with change in Antarctic atmospheric temperature. Ice volume only preceded atmospheric CO2 only a little at the 23-ka precession band, lagged the atmospheric CO2 at the 100-ka eccentricity band, and was in phase with atmospheric CO2 at the 40-ka obliquity band.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号