首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
理论与方法论   1篇
综合类   5篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  1999年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Sipkins DA  Wei X  Wu JW  Runnels JM  Côté D  Means TK  Luster AD  Scadden DT  Lin CP 《Nature》2005,435(7044):969-973
The organization of cellular niches is known to have a key role in regulating normal stem cell differentiation and regeneration, but relatively little is known about the architecture of microenvironments that support malignant metastasis. Using dynamic in vivo confocal imaging, here we show that murine bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant stromal-cell-derived factor 1 (SDF-1) in discrete, discontinuous areas that influence the homing of a variety of tumour cell lines. Disruption of the interactions between SDF-1 and its receptor CXCR4 inhibits the homing of Nalm-6 cells (an acute lymphoblastic leukaemia cell line) to these vessels. Further studies revealed that circulating leukaemic cells can engraft around these vessels, suggesting that this molecularly distinct vasculature demarcates a microenvironment for early metastatic tumour spread in bone marrow. Finally, purified haematopoietic stem/progenitor cells and lymphocytes also localize to the same microdomains, indicating that this vasculature might also function in benign states to demarcate specific portals for the entry of cells into the marrow space. Specialized vascular structures therefore appear to delineate a microenvironment with unique physiology that can be exploited by circulating malignant cells.  相似文献   
2.
Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets.  相似文献   
3.
Allergic and parasitic worm immunity is characterized by infiltration of tissues with interleukin (IL)-4- and IL-13-expressing cells, including T-helper-2 cells, eosinophils and basophils. Tissue macrophages assume a distinct phenotype, designated alternatively activated macrophages. Relatively little is known about the factors that trigger these host responses. Chitin, a widespread environmental biopolymer of N-acetyl-beta-D-glucosamine, provides structural rigidity to fungi, crustaceans, helminths and insects. Here, we show that chitin induces the accumulation in tissue of IL-4-expressing innate immune cells, including eosinophils and basophils, when given to mice. Tissue infiltration was unaffected by the absence of Toll-like-receptor-mediated lipopolysaccharide recognition but did not occur if the injected chitin was pre-treated with the IL-4- and IL-13-inducible mammalian chitinase, AMCase, or if the chitin was injected into mice that overexpressed AMCase. Chitin mediated alternative macrophage activation in vivo and the production of leukotriene B(4), which was required for optimal immune cell recruitment. Chitin is a recognition element for tissue infiltration by innate cells implicated in allergic and helminth immunity and this process can be negatively regulated by a vertebrate chitinase.  相似文献   
4.
Given two dendrograms (rooted tree diagrams) which have some but not all of their base points in common, a supertree is a dendrogram from which each of the original trees can be regarded as samples The distinction is made between inconsistent and consistent sample trees, defined by whether or not the samples provide contradictory information about the supertree An algorithm for obtaining the strict consensus supertree of two consistent sample trees is presented, as are procedures for merging two inconsistent sample trees Some suggestions for future work are made  相似文献   
5.
6.
Monocytes contribute to the development of atherosclerotic lesions in mouse models. The chemoattractant proteins (chemokines), monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), are found in human atheroma, and mice lacking receptors for these chemokines are less susceptible to atherosclerosis and have fewer monocytes in vascular lesions. Although MCP-1 has a powerful effect on monocytes, IL-8 is thought to act predominantly on neutrophils and it is unclear how it could recruit monocytes. Here we investigate the ability of chemokines to control the interaction of monocytes under flow conditions with vascular endothelium that has been transduced to express specific leukocyte-adherence receptors. We find that MCP-1 and IL-8 can each rapidly cause rolling monocytes to adhere firmly onto monolayers expressing E-selectin, whereas related chemokines do not. These effects do not correlate with either the induction of a calcium transient or chemotaxis. We conclude that chemokines are important modulators of monocyte-endothelial interactions under flow conditions. Moreover, our finding that IL-8 is a powerful trigger for firm adhesion of monocytes to vascular endothelium reveals an unexpected role for this chemokine in monocyte recruitment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号